Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin Levine is active.

Publication


Featured researches published by Kevin Levine.


Oncotarget | 2017

Functional characterization of lysine-specific demethylase 2 (LSD2/KDM1B) in breast cancer progression

Lin Chen; Shauna N. Vasilatos; Ye Qin; Tiffany A. Katz; Chunyu Cao; Hao Wu; Nilgun Tasdemir; Kevin Levine; Steffi Oesterreich; Nancy E. Davidson; Yi Huang

Flavin-dependent histone demethylases govern histone H3K4 methylation and act as important chromatin modulators that are extensively involved in regulation of DNA replication, gene transcription, DNA repair, and heterochromatin gene silencing. While the activities of lysine-specific demethylase 1 (LSD1/KDM1A) in facilitating breast cancer progression have been well characterized, the roles of its homolog LSD2 (KDM1B) in breast oncogenesis are relatively less understood. In this study, we showed that LSD2 protein level was significantly elevated in malignant breast cell lines compared with normal breast epithelial cell line. TCGA- Oncomine database showed that LSD2 expression is significantly higher in basal-like breast tumors compared to other breast cancer subtypes or normal breast tissue. Overexpression of LSD2 in MDA-MB-231 cells significantly altered the expression of key important epigenetic modifiers such as LSD1, HDAC1/2, and DNMT3B; promoted cellular proliferation; and augmented colony formation in soft agar; while attenuating motility and invasion. Conversely, siRNA-mediated depletion of endogenous LSD2 hindered growth of multiple breast cancer cell lines while shRNA-mediated LSD2 depletion augmented motility and invasion. Moreover, LSD2 overexpression in MDA-MB-231 cells facilitated mammosphere formation, enriched the subpopulation of CD49f+/EpCAM- and ALDHhigh, and induced the expression of pluripotent stem cell markers, NANOG and SOX2. In xenograft studies using immune-compromised mice, LSD2-overexpressing MDA-MB-231 cells displayed accelerated tumor growth but significantly fewer lung metastases than controls. Taken together, our findings provide novel insights into the critical and multifaceted roles of LSD2 in the regulation of breast cancer progression and cancer stem cell enrichment.Flavin-dependent histone demethylases govern histone H3K4 methylation and act as important chromatin modulators that are extensively involved in regulation of DNA replication, gene transcription, DNA repair, and heterochromatin gene silencing. While the activities of lysine-specific demethylase 1 (LSD1/KDM1A) in facilitating breast cancer progression have been well characterized, the roles of its homolog LSD2 (KDM1B) in breast oncogenesis are relatively less understood. In this study, we showed that LSD2 protein level was significantly elevated in malignant breast cell lines compared with normal breast epithelial cell line. TCGA- Oncomine database showed that LSD2 expression is significantly higher in basal-like breast tumors compared to other breast cancer subtypes or normal breast tissue. Overexpression of LSD2 in MDA-MB-231 cells significantly altered the expression of key important epigenetic modifiers such as LSD1, HDAC1/2, and DNMT3B; promoted cellular proliferation; and augmented colony formation in soft agar; while attenuating motility and invasion. Conversely, siRNA-mediated depletion of endogenous LSD2 hindered growth of multiple breast cancer cell lines while shRNA-mediated LSD2 depletion augmented motility and invasion. Moreover, LSD2 overexpression in MDA-MB-231 cells facilitated mammosphere formation, enriched the subpopulation of CD49f+/EpCAM- and ALDHhigh, and induced the expression of pluripotent stem cell markers, NANOG and SOX2. In xenograft studies using immune-compromised mice, LSD2-overexpressing MDA-MB-231 cells displayed accelerated tumor growth but significantly fewer lung metastases than controls. Taken together, our findings provide novel insights into the critical and multifaceted roles of LSD2 in the regulation of breast cancer progression and cancer stem cell enrichment.


Scientific Reports | 2018

Invasive lobular and ductal breast carcinoma differ in immune response, protein translation efficiency and metabolism

Tian Du; Li Zhu; Kevin Levine; Nilgun Tasdemir; Adrian V. Lee; Dario A. A. Vignali; Bennett Van Houten; George C. Tseng; Steffi Oesterreich

Invasive lobular carcinoma (ILC) is the second most common histological subtype of breast cancer following invasive ductal carcinoma (IDC). ILC differs from IDC in a number of histological and clinical features, such as single strand growth, difficulty in detection, and frequent late recurrences. To understand the molecular pathways involved in the clinical characteristics of ILC, we compared the gene expression profiles of luminal A ILC and luminal A IDC using data from TCGA and utilized samples from METABRIC as a validation data set. Top pathways that were significantly enriched in ILC were related to immune response. ILC exhibited a higher activity of almost all types of immune cells based on cell type-specific signatures compared to IDC. Conversely, pathways that were less enriched in ILC were related to protein translation and metabolism, which we functionally validated in cell lines. The higher immune activity uncovered in our study highlights the currently unexplored potential of a response to immunotherapy in a subset of patients with ILC. Furthermore, the lower rates of protein translation and metabolism - known features of tumor dormancy - may play a role in the late recurrences of ILC and lower detection rate in mammography and PET scanning.


Endocrinology | 2018

Upregulation of IRS1 Enhances IGF1 Response in Y537S and D538G ESR1 Mutant Breast Cancer Cells

Zheqi Li; Kevin Levine; Amir Bahreini; Peilu Wang; David Chu; Ben Ho Park; Steffi Oesterreich; Adrian V. Lee

Increased evidence suggests that somatic mutations in the ligand-binding domain of estrogen receptor [ER (ERα/ESR1)] are critical mediators of endocrine-resistant breast cancer progression. Insulinlike growth factor-1 (IGF1) is an essential regulator of breast development and tumorigenesis and also has a role in endocrine resistance. A recent study showed enhanced crosstalk between IGF1 and ERα in ESR1 mutant cells, but detailed mechanisms are incompletely understood. Using genome-edited MCF-7 and T47D cell lines harboring Y537S and D538G ESR1 mutations, we characterized altered IGF1 signaling. RNA sequencing revealed upregulation of multiple genes in the IGF1 pathway, including insulin receptor substrate-1 (IRS1), consistent in both Y537S and D538G ESR1 mutant cell line models. Higher IRS1 expression was confirmed by quantitative reverse transcription polymerase chain reaction and immunoblotting. ESR1 mutant cells also showed increased levels of IGF-regulated genes, reflected by activation of an IGF signature. IGF1 showed increased sensitivity and potency in growth stimulation of ESR1 mutant cells. Analysis of downstream signaling revealed the phosphoinositide 3-kinase (PI3K)-Akt axis as a major pathway mediating the enhanced IGF1 response in ESR1 mutant cells. Decreasing IRS1 expression by small interfering RNA diminished the increased sensitivity to IGF1. Combination treatment with inhibitors against IGF1 receptor (IGF1R; OSI-906) and ER (fulvestrant) showed synergistic growth inhibition in ESR1 mutant cells, particularly at lower effective concentrations. Our study supports a critical role of enhanced IGF1 signaling in ESR1 mutant cell lines, pointing toward a potential for cotargeting IGF1R and ERα in endocrine-resistant breast tumors with mutant ESR1.


Genome Medicine | 2016

Non-coding single nucleotide variants affecting estrogen receptor binding and activity

Amir Bahreini; Kevin Levine; Lucas Santana-Santos; Panayiotis V. Benos; Peilu Wang; Courtney Andersen; Steffi Oesterreich; Adrian V. Lee

BackgroundEstrogen receptor (ER) activity is critical for the development and progression of the majority of breast cancers. It is known that ER is differentially bound to DNA leading to transcriptomic and phenotypic changes in different breast cancer models. We investigated whether single nucleotide variants (SNVs) in ER binding sites (regSNVs) contribute to ER action through changes in the ER cistrome, thereby affecting disease progression. Here we developed a computational pipeline to identify SNVs in ER binding sites using chromatin immunoprecipitation sequencing (ChIP-seq) data from ER+ breast cancer models.MethodsER ChIP-seq data were downloaded from the Gene Expression Omnibus (GEO). GATK pipeline was used to identify SNVs and the MACS algorithm was employed to call DNA-binding sites. Determination of the potential effect of a given SNV in a binding site was inferred using reimplementation of the is-rSNP algorithm. The Cancer Genome Atlas (TCGA) data were integrated to correlate the regSNVs and gene expression in breast tumors. ChIP and luciferase assays were used to assess the allele-specific binding.ResultsAnalysis of ER ChIP-seq data from MCF7 cells identified an intronic SNV in the IGF1R gene, rs62022087, predicted to increase ER binding. Functional studies confirmed that ER binds preferentially to rs62022087 versus the wild-type allele. By integrating 43 ER ChIP-seq datasets, multi-omics, and clinical data, we identified 17 regSNVs associated with altered expression of adjacent genes in ER+ disease. Of these, the top candidate was in the promoter of the GSTM1 gene and was associated with higher expression of GSTM1 in breast tumors. Survival analysis of patients with ER+ tumors revealed that higher expression of GSTM1, responsible for detoxifying carcinogens, was correlated with better outcome.ConclusionsIn conclusion, we have developed a computational approach that is capable of identifying putative regSNVs in ER ChIP-binding sites. These non-coding variants could potentially regulate target genes and may contribute to clinical prognosis in breast cancer.


bioRxiv | 2018

Comprehensive 2D and 3D phenotypic characterization of human invasive lobular carcinoma cell lines

Nilgun Tasdemir; Emily Bossart; Zheqi Li; Zhu Li; Kevin Levine; Britta M. Jacobsen; George C. Tseng; Nancy E. Davidson; Steffi Oesterreich

Invasive lobular carcinoma (ILC) is the second most common subtype of breast cancer following invasive ductal carcinoma (IDC) and characterized by the loss of E-cadherin-mediated adherens junctions. Despite displaying unique histological and clinical features, ILC still remains a chronically understudied disease with limited knowledge on the available laboratory research models. To this end, herein we report a comprehensive 2D and 3D phenotypic characterization of four Estrogen Receptor-positive human ILC cell lines - MDA-MB-134, SUM44, MDA-MB-330 and BCK4. Compared to the IDC cell lines MCF7, T47D and MDA-MB-231, ultra-low attachment culture conditions revealed a remarkable anchorage-independence ability that was unique to the ILC cells, a feature not evident in soft agar gels. 3D Collagen I and Matrigel culture indicated a generally loose morphology for the ILC cell lines, which exhibited differing preferences for adhesion to ECM proteins in 2D. Furthermore, ILC cells had limited migration and invasion ability in wound-scratch and transwell assays with the exception of haptotaxis to Collagen I. Transcriptional comparison of the cell lines confirmed the decreased cell proliferation and E-cadherin-mediated intercellular junctions in ILC, while uncovering the induction of novel pathways related to cyclic nucleotide phosphodiesterase activity, ion channels, drug metabolism and alternative cell adhesion molecules such as N-cadherin, some of which were also differentially regulated in ILC versus IDC tumors. Altogether, these studies will serve as an invaluable resource for the breast cancer research community and facilitate further functional discoveries towards understanding ILC, identifying novel drug targets and ultimately improving the outcome of patients with ILC. Authors’ Contributions Conception and design: N. Tasdemir, NE. Davidson, S. Oesterreich Development of methodology: N. Tasdemir, L. Zhu, GC. Tseng, S. Oesterreich Acquisition of data (performed experiments, processed data, etc.): N. Tasdemir, E. Bossart, Z. Li, Z. Li Analysis and interpretation of data (e.g. biological interpretation, statistical analysis, computational analysis): N. Tasdemir, Z. Li, KM. Levine, NE. Davidson, S. Oesterreich Writing, review and/or revision of the manuscript: N. Tasdemir, Z. Li, KM. Levine, BM. Jacobson, GC. Tseng, NE. Davidson, S. Oesterreich Study supervision: NE. Davidson and S. Oesterreich


Journal of Cancer Metastasis and Treatment | 2018

Targeting adenosine receptor 2B in triple negative breast cancer

Carola A. Neumann; Kevin Levine; Steffi Oesterreich

© The Author(s) 2018. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Targeting adenosine receptor 2B in triple negative breast cancer


Clinical Cancer Research | 2018

Loss of E-cadherin Enhances IGF1–IGF1R Pathway Activation and Sensitizes Breast Cancers to Anti-IGF1R/InsR Inhibitors

Alison M. Nagle; Kevin Levine; Nilgun Tasdemir; Julie A Scott; Kara Burlbaugh; Justin W Kehm; Tiffany A. Katz; David N. Boone; Britta M. Jacobsen; Jennifer M Atkinson; Steffi Oesterreich; Adrian V. Lee

Purpose: Insulin-like growth factor 1 (IGF1) signaling regulates breast cancer initiation and progression and associated cancer phenotypes. We previously identified E-cadherin (CDH1) as a repressor of IGF1 signaling and in this study examined how loss of E-cadherin affects IGF1R signaling and response to anti-IGF1R/insulin receptor (InsR) therapies in breast cancer. Experimental Design: Breast cancer cell lines were used to assess how altered E-cadherin levels regulate IGF1R signaling and response to two anti-IGF1R/InsR therapies. In situ proximity ligation assay (PLA) was used to define interaction between IGF1R and E-cadherin. TCGA RNA-seq and RPPA data were used to compare IGF1R/InsR activation in estrogen receptor-positive (ER+) invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) tumors. ER+ ILC cell lines and xenograft tumor explant cultures were used to evaluate efficacy to IGF1R pathway inhibition in combination with endocrine therapy. Results: Diminished functional E-cadherin increased both activation of IGF1R signaling and efficacy to anti-IGF1R/InsR therapies. PLA demonstrated a direct endogenous interaction between IGF1R and E-cadherin at points of cell–cell contact. Increased expression of IGF1 ligand and levels of IGF1R/InsR phosphorylation were observed in E-cadherin–deficient ER+ ILC compared with IDC tumors. IGF1R pathway inhibitors were effective in inhibiting growth in ER+ ILC cell lines and synergized with endocrine therapy and similarly IGF1R/InsR inhibition reduced proliferation in ILC tumor explant culture. Conclusions: We provide evidence that loss of E-cadherin hyperactivates the IGF1R pathway and increases sensitivity to IGF1R/InsR targeted therapy, thus identifying the IGF1R pathway as a potential novel target in E-cadherin–deficient breast cancers. Clin Cancer Res; 24(20); 5165–77. ©2018 AACR.


Cancer Research | 2018

Comprehensive phenotypic characterization of human invasive lobular carcinoma cell lines in 2D and 3D cultures

Nilgun Tasdemir; Emily Bossart; Zheqi Li; Li Zhu; Matthew J. Sikora; Kevin Levine; Britta M. Jacobsen; George C. Tseng; Nancy E. Davidson; Steffi Oesterreich

Invasive lobular carcinoma (ILC) is the second most common subtype of breast cancer following invasive ductal carcinoma (IDC) and characterized by the loss of E-cadherin-mediated adherens junctions. Despite displaying unique histologic and clinical features, ILC still remains a chronically understudied disease, with limited knowledge gleaned from available laboratory research models. Here we report a comprehensive 2D and 3D phenotypic characterization of four estrogen receptor-positive human ILC cell lines: MDA-MB-134, SUM44, MDA-MB-330, and BCK4. Compared with the IDC cell lines MCF7, T47D, and MDA-MB-231, ultra-low attachment culture conditions revealed remarkable anchorage independence unique to ILC cells, a feature not evident in soft-agar gels. Three-dimensional Collagen I and Matrigel culture indicated a generally loose morphology for ILC cell lines, which exhibited differing preferences for adhesion to extracellular matrix proteins in 2D. Furthermore, ILC cells were limited in their ability to migrate and invade in wound-scratch and transwell assays, with the exception of haptotaxis to Collagen I. Transcriptional comparison of these cell lines confirmed the decreased cell proliferation and E-cadherin-mediated intercellular junctions in ILC while uncovering the induction of novel pathways related to cyclic nucleotide phosphodiesterase activity, ion channels, drug metabolism, and alternative cell adhesion molecules such as N-cadherin, some of which were differentially regulated in ILC versus IDC tumors. Altogether, these studies provide an invaluable resource for the breast cancer research community and facilitate further functional discoveries toward understanding ILC, identifying novel drug targets, and ultimately improving the outcome of patients with ILC.Significance: These findings provide the breast cancer research community with a comprehensive assessment of human invasive lobular carcinoma (ILC) cell line signaling and behavior in various culture conditions, aiding future endeavors to develop therapies and to ultimately improve survival in patients with ILC. Cancer Res; 78(21); 6209-22. ©2018 AACR.


Breast Cancer Research | 2018

Key regulators of lipid metabolism drive endocrine resistance in invasive lobular breast cancer

Tian Du; Matthew J. Sikora; Kevin Levine; Nilgun Tasdemir; Rebecca B. Riggins; Stacy Gelhaus Wendell; Bennett Van Houten; Steffi Oesterreich

BackgroundInvasive lobular breast carcinoma (ILC) is a histological subtype of breast cancer that is characterized by loss of E-cadherin and high expression of estrogen receptor alpha (ERα). In many cases, ILC is effectively treated with adjuvant aromatase inhibitors (AIs); however, acquired AI resistance remains a significant problem.MethodsTo identify underlying mechanisms of acquired anti-estrogen resistance in ILC, we recently developed six long-term estrogen-deprived (LTED) variant cell lines from the human ILC cell lines SUM44PE (SUM44; two lines) and MDA-MB-134VI (MM134; four lines). To better understand mechanisms of AI resistance in these models, we performed transcriptional profiling analysis by RNA-sequencing followed by candidate gene expression and functional studies.ResultsMM134 LTED cells expressed ER at a decreased level and lost growth response to estradiol, while SUM44 LTED cells retained partial ER activity. Our transcriptional profiling analysis identified shared activation of lipid metabolism across all six independent models. However, the underlying basis of this signature was distinct between models. Oxysterols were able to promote the proliferation of SUM44 LTED cells but not MM134 LTED cells. In contrast, MM134 LTED cells displayed a high expression of the sterol regulatory element-binding protein 1 (SREBP1), a regulator of fatty acid and cholesterol synthesis, and were hypersensitive to genetic or pharmacological inhibition of SREBPs. Several SREBP1 downstream targets involved in fatty acid synthesis, including FASN, were induced, and MM134 LTED cells were more sensitive to etomoxir, an inhibitor of the rate-limiting enzyme in beta-oxidation, than their respective parental control cells. Finally, in silico expression analysis in clinical specimens from a neo-adjuvant endocrine trial showed a significant association between the increase of SREBP1 expression and lack of clinical response, providing further support for a role of SREBP1 in the acquisition of endocrine resistance in breast cancer.ConclusionsOur characterization of a unique series of AI-resistant ILC models identifies the activation of key regulators of fatty acid and cholesterol metabolism, implicating lipid-metabolic processes driving estrogen-independent growth of ILC cells. Targeting these changes may prove a strategy for prevention and treatment of endocrine resistance for patients with ILC.


Antioxidants & Redox Signaling | 2018

A Peroxidase Peroxiredoxin 1-Specific Redox Regulation of the Novel FOXO3 microRNA Target let-7

Barbara L. Hopkins; Monica J. S. Nadler; John J. Skoko; Thierry Bertomeu; Andrea Pelosi; Parisa Mousavi Shafaei; Kevin Levine; Anja Schempf; Bodvael Pennarun; Bo Yang; Dipak Datta; Octavian Bucur; Kenneth Ndebele; Steffi Oesterreich; Da Yang; Maria Giulia Rizzo; Roya Khosravi-Far; Carola A. Neumann

Abstract Precision in redox signaling is attained through posttranslational protein modifications such as oxidation of protein thiols. The peroxidase peroxiredoxin 1 (PRDX1) regulates signal transduction through changes in thiol oxidation of its cysteines. We demonstrate here that PRDX1 is a binding partner for the tumor suppressive transcription factor FOXO3 that directly regulates the FOXO3 stress response. Heightened oxidative stress evokes formation of disulfide-bound heterotrimers linking dimeric PRDX1 to monomeric FOXO3. Absence of PRDX1 enhances FOXO3 nuclear localization and transcription that are dependent on the presence of Cys31 or Cys150 within FOXO3. Notably, FOXO3-T32 phosphorylation is constitutively enhanced in these mutants, but nuclear translocation of mutant FOXO3 is restored with PI3K inhibition. Here we show that on H2O2 exposure, transcription of tumor suppressive miRNAs let-7b and let-7c is regulated by FOXO3 or PRDX1 expression levels and that let-7c is a novel target for FOXO3. Conjointly, inhibition of let-7 microRNAs increases let-7-phenotypes in PRDX1-deficient breast cancer cells. Altogether, these data ascertain the existence of an H2O2-sensitive PRDX1-FOXO3 signaling axis that fine tunes FOXO3 activity toward the transcription of gene targets in response to oxidative stress. Antioxid. Redox Signal. 28, 62–77.

Collaboration


Dive into the Kevin Levine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian V. Lee

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Nilgun Tasdemir

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zheqi Li

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Amir Bahreini

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Chu

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

David J. Dabbs

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge