Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin M. Carr is active.

Publication


Featured researches published by Kevin M. Carr.


Plant Physiology | 2007

Sampling the Arabidopsis Transcriptome with Massively Parallel Pyrosequencing

Andreas P. M. Weber; Katrin L. Weber; Kevin M. Carr; Curtis G. Wilkerson; John B. Ohlrogge

Massively parallel sequencing of DNA by pyrosequencing technology offers much higher throughput and lower cost than conventional Sanger sequencing. Although extensively used already for sequencing of genomes, relatively few applications of massively parallel pyrosequencing to transcriptome analysis have been reported. To test the ability of this technology to provide unbiased representation of transcripts, we analyzed mRNA from Arabidopsis (Arabidopsis thaliana) seedlings. Two sequencing runs yielded 541,852 expressed sequence tags (ESTs) after quality control. Mapping of the ESTs to the Arabidopsis genome and to The Arabidopsis Information Resource 7.0 cDNA models indicated: (1) massively parallel pyrosequencing detected transcription of 17,449 gene loci providing very deep coverage of the transcriptome. Performing a second sequencing run only increased the number of genes identified by 10%, but increased the overall sequence coverage by 50%. (2) Mapping of the ESTs to their predicted full-length transcripts indicated that all regions of the transcript were well represented regardless of transcript length or expression level. Furthermore, short, medium, and long transcripts were equally represented. (3) Over 16,000 of the ESTs that mapped to the genome were not represented in the existing dbEST database. In some cases, the ESTs provide the first experimental evidence for transcripts derived from predicted genes, and, for at least 60 locations in the genome, pyrosequencing identified likely protein-coding sequences that are not now annotated as genes. Together, the results indicate massively parallel pyrosequencing provides novel information helpful to improve the annotation of the Arabidopsis genome. Furthermore, the unbiased representation of transcripts will be particularly useful for gene discovery and gene expression analysis of nonmodel plants with less complete genomic information.


Science | 2013

Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote

Gerald Schönknecht; Wei-Hua Chen; Chad M. Ternes; Guillaume G. Barbier; Roshan P. Shrestha; Mario Stanke; Andrea Bräutigam; Brett J. Baker; Jillian F. Banfield; R. Michael Garavito; Kevin M. Carr; Curtis G. Wilkerson; Stefan A. Rensing; David Gagneul; Nicholas E. Dickenson; Christine Oesterhelt; Martin J. Lercher; Andreas P. M. Weber

Hot, Toxic Eukaryote Unusually, the single-celled eukaryote red alga, Galdieria sulphuraria, can thrive in hot, acidic springs. This organism is endowed with extraordinary metabolic talents and can consume a variety of strange carbohydrates, as well as turn on photosynthesis when the food runs out. Schönknecht et al. (p. 1207; see the Perspective by Rocha) discerned from phylogenetic analysis of its genome that during its evolution, G. sulphuraria appears to have commandeered at least 75 bacterial and archaeal genes by horizontal gene transfer and then applied gene expansion to boost its metabolic repertoire. A mosaic of genes acquired from various phyla enable a red alga to grow abundantly in hot, acidic, and toxic niches. [Also see Perspective by Rocha] Some microbial eukaryotes, such as the extremophilic red alga Galdieria sulphuraria, live in hot, toxic metal-rich, acidic environments. To elucidate the underlying molecular mechanisms of adaptation, we sequenced the 13.7-megabase genome of G. sulphuraria. This alga shows an enormous metabolic flexibility, growing either photoautotrophically or heterotrophically on more than 50 carbon sources. Environmental adaptation seems to have been facilitated by horizontal gene transfer from various bacteria and archaea, often followed by gene family expansion. At least 5% of protein-coding genes of G. sulphuraria were probably acquired horizontally. These proteins are involved in ecologically important processes ranging from heavy-metal detoxification to glycerol uptake and metabolism. Thus, our findings show that a pan-domain gene pool has facilitated environmental adaptation in this unicellular eukaryote.


Plant Physiology | 2011

An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species

Andrea Bräutigam; Kaisa Kajala; Julia Wullenweber; Manuel Sommer; David Gagneul; Katrin L. Weber; Kevin M. Carr; Udo Gowik; Janina Mass; Martin J. Lercher; Peter Westhoff; Julian M. Hibberd; Andreas P. M. Weber

C4 photosynthesis involves alterations to the biochemistry, cell biology, and development of leaves. Together, these modifications increase the efficiency of photosynthesis, and despite the apparent complexity of the pathway, it has evolved at least 45 times independently within the angiosperms. To provide insight into the extent to which gene expression is altered between C3 and C4 leaves, and to identify candidates associated with the C4 pathway, we used massively parallel mRNA sequencing of closely related C3 (Cleome spinosa) and C4 (Cleome gynandra) species. Gene annotation was facilitated by the phylogenetic proximity of Cleome and Arabidopsis (Arabidopsis thaliana). Up to 603 transcripts differ in abundance between these C3 and C4 leaves. These include 17 transcription factors, putative transport proteins, as well as genes that in Arabidopsis are implicated in chloroplast movement and expansion, plasmodesmatal connectivity, and cell wall modification. These are all characteristics known to alter in a C4 leaf but that previously had remained undefined at the molecular level. We also document large shifts in overall transcription profiles for selected functional classes. Our approach defines the extent to which transcript abundance in these C3 and C4 leaves differs, provides a blueprint for the NAD-malic enzyme C4 pathway operating in a dicotyledon, and furthermore identifies potential regulators. We anticipate that comparative transcriptomics of closely related species will provide deep insight into the evolution of other complex traits.


Journal of Biological Chemistry | 1996

Domains of DnaA Protein Involved in Interaction with DnaB Protein, and in Unwinding the Escherichia coli Chromosomal Origin

Jaroslaw Marszalek; Wenge Zhang; Theodore R. Hupp; Carla Margulies; Kevin M. Carr; Scott Cherry; Jon M. Kaguni

DnaA protein of Escherichia coli is a sequence-specific DNA-binding protein required for the initiation of DNA replication from the chromosomal origin, oriC. It is also required for replication of several plasmids including pSC101, F, P-1, and R6K. A collection of monoclonal antibodies to DnaA protein has been produced and the primary epitopes recognized by them have been determined. These antibodies have also been examined for the ability to inhibit activities of DNA binding, ATP binding, unwinding of oriC, and replication of both an oriC plasmid, and an M13 single-stranded DNA with a proposed hairpin structure containing a DnaA protein-binding site. Replication of the latter DNA is dependent on DnaA protein by a mechanism termed ABC priming. These studies suggest regions of DnaA protein involved in interaction with DnaB protein, and in unwinding of oriC, or low-affinity binding of ATP.


Journal of Biotechnology | 2008

Low-coverage massively parallel pyrosequencing of cDNAs enables proteomics in non-model species: Comparison of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes

Andrea Bräutigam; Roshan P. Shrestha; Doug Whitten; Curtis G. Wilkerson; Kevin M. Carr; John E. Froehlich; Andreas P. M. Weber

Proteomics is a valuable tool for establishing and comparing the protein content of defined tissues, cell types, or subcellular structures. Its use in non-model species is currently limited because the identification of peptides critically depends on sequence databases. In this study, we explored the potential of a preliminary cDNA database for the non-model species Pisum sativum created by a small number of massively parallel pyrosequencing (MPSS) runs for its use in proteomics and compared it to comprehensive cDNA databases from Medicago truncatula and Arabidopsis thaliana created by Sanger sequencing. Each database was used to identify proteins from a pea leaf chloroplast envelope preparation. It is shown that the pea database identified more proteins with higher accuracy, although the sequence quality was low and the sequence contigs were short compared to databases from model species. Although the number of identified proteins in non-species-specific databases could potentially be increased by lowering the threshold for successful protein identifications, this strategy markedly increases the number of wrongly identified proteins. The identification rate with non-species-specific databases correlated with spectral abundance but not with the predicted membrane helix content, and strong conservation is necessary but not sufficient for protein identification with a non-species-specific database. It is concluded that massively parallel sequencing of cDNAs substantially increases the power of proteomics in non-model species.


Molecular Microbiology | 1996

The 4784V missense mutation of the dnaA5 and dnaA46 alleles confers a defect in ATP binding and thermoiability in initiation of Escherichia coli DNA replication

Kevin M. Carr; Jon M. Kaguni

The temperature‐sensitive dnaA5 and dnaA46 alleles each contain two missense mutations. These mutations have been separated and the resulting mutant proteins studied with regard to their role in initiation of DNA replication in vitro. Whereas the His‐252 to tyrosine substitution (H252Y) unique to the dnaA46 allele did not affect the activities of DnaA protein, the unique substitution of the dnaAS allele, Gly‐426 to serine (G426S), was reduced in its DNA‐binding affinity for oriC, the chromosomal origin. This suggests that the C‐terminal region of the DnaA protein is involved in DNA binding. The alanine‐to‐valine substitution at amino acid 184 (A184V) that is common to both of the alleles is responsible for the thermolabile defect and lag in DNA synthesis of these mutants. Mutant proteins bearing the common substitution were defective in ATP binding and were inactive in a replication system reconstituted with purified proteins. DnaK and GrpE protein activated these mutant proteins for replication and ATP binding; the latter was measured indirectly by the ATP‐dependent formation of a tryp‐sin‐resistant peptide. However, with this assay, the ATP‐binding affinity appeared to be reduced relative to wild‐type DnaA protein. Activation was by conversion of a self‐aggregate to the monomer, and also by a conformational alteration that correlated with ATP binding.


BMC Genomics | 2012

Transcriptome analyses of early cucumber fruit growth identifies distinct gene modules associated with phases of development

Kaori Ando; Kevin M. Carr; Rebecca Grumet

BackgroundEarly stages of fruit development from initial set through exponential growth are critical determinants of size and yield, however, there has been little detailed analysis of this phase of development. In this study we combined morphological analysis with 454 pyrosequencing to study transcript level changes occurring in young cucumber fruit at five ages from anthesis through the end of exponential growth.ResultsThe fruit samples produced 1.13 million ESTs which were assembled into 27,859 contigs with a mean length of 834 base pairs and a mean of 67 reads per contig. All contigs were mapped to the cucumber genome. Principal component analysis separated the fruit ages into three groups corresponding with cell division/pre-exponential growth (0 and 4 days post pollination (dpp)), peak exponential expansion (8dpp), and late/post-exponential expansion stages of growth (12 and 16 dpp). Transcripts predominantly expressed at 0 and 4 dpp included homologs of histones, cyclins, and plastid and photosynthesis related genes. The group of genes with peak transcript levels at 8dpp included cytoskeleton, cell wall, lipid metabolism and phloem related proteins. This group was also dominated by genes with unknown function or without known homologs outside of cucurbits. A second shift in transcript profile was observed at 12-16dpp, which was characterized by abiotic and biotic stress related genes and significant enrichment for transcription factor gene homologs, including many associated with stress response and development.ConclusionsThe transcriptome data coupled with morphological analyses provide an informative picture of early fruit development. Progressive waves of transcript abundance were associated with cell division, development of photosynthetic capacity, cell expansion and fruit growth, phloem activity, protection of the fruit surface, and finally transition away from fruit growth toward a stage of enhanced stress responses. These results suggest that the interval between expansive growth and ripening includes further developmental differentiation with an emphasis on defense. The increased transcript levels of cucurbit-specific genes during the exponential growth stage may indicate unique factors contributing to rapid growth in cucurbits.


The EMBO Journal | 1993

Open-complex formation by the host initiator, DnaA, at the origin of P1 plasmid replication.

Gauranga Mukhopadhyay; Kevin M. Carr; Jon M. Kaguni; Dhruba K. Chattoraj

Replication of P1 plasmid requires both the plasmid‐specific initiator, RepA, and the host initiator, DnaA. Here we show that DnaA can make the P1 origin reactive to the single‐strand specific reagents KMnO4 and mung bean nuclease. Addition of RepA further increased the KMnO4 reactivity of the origin, although RepA alone did not influence the reaction. The increased reactivity implies that the two initiators interact in some way to alter the origin conformation. The KMnO4 reactivity was restricted to one strand of the origin. We suggest that the roles of DnaA in P1 plasmid and bacterial replication are similar: origin opening and loading of the DnaB helicase. The strand‐bias in chemical reactivity at the P1 origin most likely indicates that only one of the strands is used for the loading of DnaB, a scenario consistent with the unidirectional replication of the plasmid.


BMC Evolutionary Biology | 2009

The sea lamprey Petromyzon marinus genome reveals the early origin of several chemosensory receptor families in the vertebrate lineage.

Scot V. Libants; Kevin M. Carr; Hong Wu; John H. Teeter; Yu Wen Chung-Davidson; Ziping Zhang; Curt Wilkerson; Weiming Li

BackgroundIn gnathostomes, chemosensory receptors (CR) expressed in olfactory epithelia are encoded by evolutionarily dynamic gene families encoding odorant receptors (OR), trace amine-associated receptors (TAAR), V1Rs and V2Rs. A limited number of OR-like sequences have been found in invertebrate chordate genomes. Whether these gene families arose in basal or advanced vertebrates has not been resolved because these families have not been examined systematically in agnathan genomes.ResultsPetromyzon is the only extant jawless vertebrate whose genome has been sequenced. Known to be exquisitely sensitive to several classes of odorants, lampreys detect fewer amino acids and steroids than teleosts. This reduced number of detectable odorants is indicative of reduced numbers of CR gene families or a reduced number of genes within CR families, or both, in the sea lamprey. In the lamprey genome we identified a repertoire of 59 intact single-exon CR genes, including 27 OR, 28 TAAR, and four V1R-like genes. These three CR families were expressed in the olfactory organ of both parasitic and adult life stages.ConclusionAn extensive search in the lamprey genome failed to identify potential orthologs or pseudogenes of the multi-exon V2R family that is greatly expanded in teleost genomes, but did find intact calcium-sensing receptors (CASR) and intact metabotropic glutamate receptors (MGR). We conclude that OR and V1R arose in chordates after the cephalochordate-urochordate split, but before the diversification of jawed and jawless vertebrates. The advent and diversification of V2R genes from glutamate receptor-family G protein-coupled receptors, most likely the CASR, occurred after the agnathan-gnathostome divergence.


Journal of Biological Chemistry | 2002

Escherichia coli DnaA Protein Loads a Single DnaB Helicase at a DnaA Box Hairpin

Kevin M. Carr; Jon M. Kaguni

The molecular engine that drives bidirectional replication fork movement from the Escherichia colireplication origin (oriC) is the replicative helicase, DnaB. At oriC, two and only two helicase molecules are loaded, one for each replication fork. DnaA participates in helicase loading; DnaC is also involved, because it must be in a complex with DnaB for delivery of the helicase. Since DnaA induces a local unwinding of oriC, one model is that the limited availability of single-stranded DNA at oriC restricts the number of DnaB molecules that can bind. In this report, we determined that one DnaB helicase or one DnaB-DnaC complex is bound to a single-stranded DNA in a biologically relevant DNA replication system. These results indicate that the availability of single-stranded DNA is not a limiting factor and support a model in which the site of entry for DnaB is altered so that it cannot be reused. We also show that 2–4 DnaA monomers are bound on the single-stranded DNA at a specific site that carries a DnaA box sequence in a hairpin structure.

Collaboration


Dive into the Kevin M. Carr's collaboration.

Top Co-Authors

Avatar

Jon M. Kaguni

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra Blinkova

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Kaori Ando

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Kimberly Ann Severson

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Mary Jo Hermandson

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Rebecca Grumet

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge