Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin M. Culligan is active.

Publication


Featured researches published by Kevin M. Culligan.


The Plant Cell | 2004

ATR Regulates a G2-Phase Cell-Cycle Checkpoint in Arabidopsis thaliana

Kevin M. Culligan; Alain Tissier; Anne B. Britt

Ataxia telangiectasia-mutated and Rad3-related (ATR) plays a central role in cell-cycle regulation, transmitting DNA damage signals to downstream effectors of cell-cycle progression. In animals, ATR is an essential gene. Here, we find that Arabidopsis (Arabidopsis thaliana) atr−/− mutants were viable, fertile, and phenotypically wild-type in the absence of exogenous DNA damaging agents but exhibit altered expression of AtRNR1 (ribonucleotide reductase large subunit) and alteration of some damage-induced cell-cycle checkpoints. atr mutants were hypersensitive to hydroxyurea (HU), aphidicolin, and UV-B light but only mildly sensitive to γ-radiation. G2 arrest was observed in response to γ-irradiation in both wild-type and atr plants, albeit with slightly different kinetics, suggesting that ATR plays a secondary role in response to double-strand breaks. G2 arrest also was observed in wild-type plants in response to aphidicolin but was defective in atr mutants, resulting in compaction of nuclei and subsequent cell death. By contrast, HU-treated wild-type and atr plants arrested in G1 and showed no obvious signs of cell death. We propose that, in plants, HU invokes a novel checkpoint responsive to low levels of deoxynucleotide triphosphates. These results demonstrate the important role of cell-cycle checkpoints in the ability of plant cells to sense and cope with problems associated with DNA replication.


Plant Journal | 2008

Both ATM and ATR promote the efficient and accurate processing of programmed meiotic double-strand breaks.

Kevin M. Culligan; Anne B. Britt

SUMMARY The ATM and ATR protein kinases play central roles in the cellular response to double-strand breaks (DSBs) by regulating DNA repair, cell-cycle arrest and apoptosis. During meiosis, SPO11-dependent DSBs are generated, initiating recombination between homologous chromosomes. Previous studies in mice and plants have shown that defects in ATM result in the appearance of abnormally fragmented chromosomes. However, the role of ATR in promoting normal meiosis has not yet been elucidated. Employing null Arabidopsis mutants of ATR and ATM, we demonstrate here that although atr mutants display no obvious defects in any phase of meiotic progression, the combination of defects in atr and atm exacerbates the fragmentation observed in the atm single mutant, prevents complete synapsis of chromosomes, and results in extensive and persistent interactions between non-homologous DNAs. The observed non-homologous interactions require the induction of programmed breaks: the combination of either the atm single or the atr atm double mutant with a spo11 defect eliminates the ectopic interactions observed in the double mutant, as well as significantly reducing the fragmentation seen in atm or in atr atm. Our results suggest that ATM is required for the efficient processing of SPO11-dependent DSBs during meiosis. They also indicate that ATM and ATR act redundantly to inhibit sustained interactions between non-homologous chromatids, and that these ectopic interactions require SPO11 activity.


Nucleic Acids Research | 2014

Genetic analysis of the Replication Protein A large subunit family in Arabidopsis reveals unique and overlapping roles in DNA repair, meiosis and DNA replication

Behailu B. Aklilu; Ryan S. Soderquist; Kevin M. Culligan

Replication Protein A (RPA) is a heterotrimeric protein complex that binds single-stranded DNA. In plants, multiple genes encode the three RPA subunits (RPA1, RPA2 and RPA3), including five RPA1-like genes in Arabidopsis. Phylogenetic analysis suggests two distinct groups composed of RPA1A, RPA1C, RPA1E (ACE group) and RPA1B, RPA1D (BD group). ACE-group members are transcriptionally induced by ionizing radiation, while BD-group members show higher basal transcription and are not induced by ionizing radiation. Analysis of rpa1 T-DNA insertion mutants demonstrates that although each mutant line is likely null, all mutant lines are viable and display normal vegetative growth. The rpa1c and rpa1e single mutants however display hypersensitivity to ionizing radiation, and combination of rpa1c and rpa1e results in additive hypersensitivity to a variety of DNA damaging agents. Combination of the partially sterile rpa1a with rpa1c results in complete sterility, incomplete synapsis and meiotic chromosome fragmentation, suggesting an early role for RPA1C in promoting homologous recombination. Combination of either rpa1c and/or rpa1e with atr revealed additive hypersensitivity phenotypes consistent with each functioning in unique repair pathways. In contrast, rpa1b rpa1d double mutant plants display slow growth and developmental defects under non-damaging conditions. We show these defects in the rpa1b rpa1d mutant are likely the result of defective DNA replication leading to reduction in cell division.


Plant Journal | 2009

The Arabidopsis ATRIP ortholog is required for a programmed response to replication inhibitors

Paul R. Sweeney; Anne B. Britt; Kevin M. Culligan

The programmed response to replication inhibitors in eukaryotic cells requires the protein kinase ATR (ataxia telangiectasia mutated and rad3-related), which is activated primarily through the persistence of replication protein A (RPA)-bound single-stranded DNA at stalled replication forks and sites of DNA damage undergoing excision repair. Once activated, ATR initiates a cascade of events, including cell-cycle arrest and induction of DNA repair, to mitigate the mutagenic effects of DNA replication in the presence of damage and/or blockage. While many of the molecular regulators of ATR have been determined in yeast and animal cells, little is known about ATR regulation in plants. To genetically define ATR regulatory pathways in Arabidopsis, we describe here a genetic screen for identifying mutants that display a characteristic phenotype of Arabidopsis atr null mutants - hypersensitivity to the replication blocking agent hydroxyurea (HU). Employing this screen, we isolated a novel mutant, termed hus2 (hydroxyurea-sensitive), that displays hypersensitivity to HU, aphidicolin and ionizing radiation, similar to atr mutants. In addition, cell-cycle progression in response to replication blocks and ionizing radiation is defective in hus2, displaying a nearly identical phenotype to atr mutants. Positional cloning of hus2 reveals a gene sequence similar to yeast Rad26/Ddc2 and ATRIP (ATR interacting protein), suggesting that hus2 encodes an Arabidopsis ATRIP ortholog.


Frontiers in Plant Science | 2016

Molecular Evolution and Functional Diversification of Replication Protein A1 in Plants

Behailu B. Aklilu; Kevin M. Culligan

Replication protein A (RPA) is a heterotrimeric, single-stranded DNA binding complex required for eukaryotic DNA replication, repair, and recombination. RPA is composed of three subunits, RPA1, RPA2, and RPA3. In contrast to single RPA subunit genes generally found in animals and yeast, plants encode multiple paralogs of RPA subunits, suggesting subfunctionalization. Genetic analysis demonstrates that five Arabidopsis thaliana RPA1 paralogs (RPA1A to RPA1E) have unique and overlapping functions in DNA replication, repair, and meiosis. We hypothesize here that RPA1 subfunctionalities will be reflected in major structural and sequence differences among the paralogs. To address this, we analyzed amino acid and nucleotide sequences of RPA1 paralogs from 25 complete genomes representing a wide spectrum of plants and unicellular green algae. We find here that the plant RPA1 gene family is divided into three general groups termed RPA1A, RPA1B, and RPA1C, which likely arose from two progenitor groups in unicellular green algae. In the family Brassicaceae the RPA1B and RPA1C groups have further expanded to include two unique sub-functional paralogs RPA1D and RPA1E, respectively. In addition, RPA1 groups have unique domains, motifs, cis-elements, gene expression profiles, and pattern of conservation that are consistent with proposed functions in monocot and dicot species, including a novel C-terminal zinc-finger domain found only in plant RPA1C-like sequences. These results allow for improved prediction of RPA1 subunit functions in newly sequenced plant genomes, and potentially provide a unique molecular tool to improve classification of Brassicaceae species.


Frontiers in Plant Science | 2014

High atomic weight, high-energy radiation (HZE) induces transcriptional responses shared with conventional stresses in addition to a core "DSB" response specific to clastogenic treatments.

Victor Missirian; Phillip A. Conklin; Kevin M. Culligan; Neil D. Huefner; Anne B. Britt

Plants exhibit a robust transcriptional response to gamma radiation which includes the induction of transcripts required for homologous recombination and the suppression of transcripts that promote cell cycle progression. Various DNA damaging agents induce different spectra of DNA damage as well as “collateral” damage to other cellular components and therefore are not expected to provoke identical responses by the cell. Here we study the effects of two different types of ionizing radiation (IR) treatment, HZE (1 GeV Fe26+ high mass, high charge, and high energy relativistic particles) and gamma photons, on the transcriptome of Arabidopsis thaliana seedlings. Both types of IR induce small clusters of radicals that can result in the formation of double strand breaks (DSBs), but HZE also produces linear arrays of extremely clustered damage. We performed these experiments across a range of time points (1.5–24 h after irradiation) in both wild-type plants and in mutants defective in the DSB-sensing protein kinase ATM. The two types of IR exhibit a shared double strand break-repair-related damage response, although they differ slightly in the timing, degree, and ATM-dependence of the response. The ATM-dependent, DNA metabolism-related transcripts of the “DSB response” were also induced by other DNA damaging agents, but were not induced by conventional stresses. Both Gamma and HZE irradiation induced, at 24 h post-irradiation, ATM-dependent transcripts associated with a variety of conventional stresses; these were overrepresented for pathogen response, rather than DNA metabolism. In contrast, only HZE-irradiated plants, at 1.5 h after irradiation, exhibited an additional and very extensive transcriptional response, shared with plants experiencing “extended night.” This response was not apparent in gamma-irradiated plants.


Plant Journal | 2006

ATR and ATM play both distinct and additive roles in response to ionizing radiation.

Kevin M. Culligan; Clare E. Robertson; Julia Foreman; Peter Doerner; Anne B. Britt


Molecular Biology of the Cell | 2005

Ionizing Radiation–dependent γ-H2AX Focus Formation Requires Ataxia Telangiectasia Mutated and Ataxia Telangiectasia Mutated and Rad3-related

Joanna Friesner; Bo Liu; Kevin M. Culligan; Anne B. Britt


Nucleic Acids Research | 2000

Evolutionary origin, diversification and specialization of eukaryotic MutS homolog mismatch repair proteins

Kevin M. Culligan; Gilbert Meyer-Gauen; James Lyons-Weiler; John B. Hays


Nucleic Acids Research | 2003

Dissimilar mispair‐recognition spectra of Arabidopsis DNA‐mismatch‐repair proteins MSH2·MSH6 (MutSα) and MSH2·MSH7 (MutSγ)

Shiau‐Yin Wu; Kevin M. Culligan; Meindert H. Lamers; John B. Hays

Collaboration


Dive into the Kevin M. Culligan's collaboration.

Top Co-Authors

Avatar

Anne B. Britt

University of California

View shared research outputs
Top Co-Authors

Avatar

Behailu B. Aklilu

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

John B. Hays

Oregon State University

View shared research outputs
Top Co-Authors

Avatar

Bo Liu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy Fernandes

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul R. Sweeney

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge