Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin M. Sargent is active.

Publication


Featured researches published by Kevin M. Sargent.


Endocrinology | 2013

Loss of Vascular Endothelial Growth Factor A (VEGFA) Isoforms in the Testes of Male Mice Causes Subfertility, Reduces Sperm Numbers, and Alters Expression of Genes That Regulate Undifferentiated Spermatogonia

Ningxia Lu; Kevin M. Sargent; Debra T. Clopton; William E. Pohlmeier; Vanessa M. Brauer; Renee M. McFee; John Weber; Napoleone Ferrara; David W. Silversides; Andrea S. Cupp

Vascular endothelial growth factor A (VEGFA) isoform treatment has been demonstrated to alter spermatogonial stem cell homeostasis. Therefore, we generated pDmrt1-Cre;Vegfa(-/-) (knockout, KO) mice by crossing pDmrt1-Cre mice to floxed Vegfa mice to test whether loss of all VEGFA isoforms in Sertoli and germ cells would impair spermatogenesis. When first mated, KO males took 14 days longer to get control females pregnant (P < .02) and tended to take longer for all subsequent parturition intervals (9 days; P < .07). Heterozygous males sired fewer pups per litter (P < .03) and after the first litter took 10 days longer (P < .05) to impregnate females, suggesting a more progressive loss of fertility. Reproductive organs were collected from 6-month-old male mice. There were fewer sperm per tubule in the corpus epididymides (P < .001) and fewer ZBTB16-stained undifferentiated spermatogonia (P < .003) in the testes of KO males. Testicular mRNA abundance for Bcl2 (P < .02), Bcl2:Bax (P < .02), Neurog3 (P < .007), and Ret was greater (P = .0005), tended to be greater for Sin3a and tended to be reduced for total Foxo1 (P < .07) in KO males. Immunofluorescence for CD31 and VE-Cadherin showed no differences in testis vasculature; however, CD31-positive staining was evident in undifferentiated spermatogonia only in KO testes. Therefore, loss of VEGFA isoforms in Sertoli and germ cells alters genes necessary for long-term maintenance of undifferentiated spermatogonia, ultimately reducing sperm numbers and resulting in subfertility.


PLOS ONE | 2014

Altered theca and cumulus oocyte complex gene expression, follicular arrest and reduced fertility in cows with dominant follicle follicular fluid androgen excess.

Adam F. Summers; William E. Pohlmeier; Kevin M. Sargent; Brizett D. Cole; Rebecca J. Vinton; Scott G. Kurz; Renee M. McFee; R. A. Cushman; Andrea S. Cupp; Jennifer R. Wood

Aspiration of bovine follicles 12–36 hours after induced corpus luteum lysis serendipitously identified two populations of cows, one with High androstenedione (A4; >40 ng/ml; mean = 102) and another with Low A4 (<20 ng/ml; mean = 9) in follicular fluid. We hypothesized that the steroid excess in follicular fluid of dominant follicles in High A4 cows would result in reduced fertility through altered follicle development and oocyte maternal RNA abundance. To test this hypothesis, estrous cycles of cows were synchronized and ovariectomy was performed 36 hours later. HPLC MS/MS analysis of follicular fluid showed increased dehydroepiandrosterone (6-fold), A4 (158-fold) and testosterone (31-fold) in the dominant follicle of High A4 cows. However, estrone (3-fold) and estradiol (2-fold) concentrations were only slightly elevated, suggesting a possible inefficiency in androgen to estrogen conversion in High A4 cows. Theca cell mRNA expression of LHCGR, GATA6, CYP11A1, and CYP17A1 was greater in High A4 cows. Furthermore, abundance of ZAR1 was decreased 10-fold in cumulus oocyte complexes from High A4 cows, whereas NLRP5 abundance tended to be 19.8-fold greater (P = 0.07). There was a tendency for reduction in stage 4 follicles in ovarian cortex samples from High A4 cows suggesting that progression to antral stages were impaired. High A4 cows tended (P<0.07) to have a 17% reduction in calving rate compared with Low A4 cows suggesting reduced fertility in the High A4 population. These data suggest that the dominant follicle environment of High A4 cows including reduced estrogen conversion and androgen excess contributes to infertility in part through altered follicular and oocyte development.


Cell and Tissue Research | 2016

VEGFA splicing: divergent isoforms regulate spermatogonial stem cell maintenance.

Kevin M. Sargent; Debra T. Clopton; Ningxia Lu; William E. Pohlmeier; Andrea S. Cupp

Despite being well-known for regulating angiogenesis in both normal and tumorigenic environments, vascular endothelial growth factor A (VEGFA) has been recently implicated in male fertility, namely in the maintenance of spermatogonial stem cells (SSC). The VEGFA gene can be spliced into multiple distinct isoforms that are either angiogenic or antiangiogenic in nature. Although studies have demonstrated the alternative splicing of VEGFA, including the divergent roles of the two isoform family types, many investigations do not differentiate between them. Data concerning VEGFA in the mammalian testis are limited, but the various angiogenic isoforms appear to promote seminiferous cord formation and to form a gradient across which cells may migrate. Treatment with either antiangiogenic isoforms of VEGFA or with inhibitors to angiogenic signaling impair these processes. Serendipitously, expression of KDR, the primary receptor for both types of VEGFA isoforms, was observed on male germ cells. These findings led to further investigation of the way that VEGFA elicits avascular functions within testes. Following treatment of donor perinatal male mice with either antiangiogenic VEGFA165b or angiogenic VEGFA164 isoforms, seminiferous tubules were less colonized following transplantation with cells from VEGFA165b-treated donors. Thus, VEGFA165b and possibly other antiangiogenic isoforms of VEGFA reduce SSC number either by promoting premature differentiation, inducing cell death, or by preventing SSC formation. Thus, angiogenic isoforms of VEGFA are hypothesized to promote SSC self-renewal, and the divergent isoforms are thought to balance one another to maintain SSC homeostasis in vivo.


Journal of Endocrinology | 2015

Vascular endothelial growth factor A: just one of multiple mechanisms for sex-specific vascular development within the testis?

Kevin M. Sargent; Renee M. McFee; Renata Spuri Gomes; Andrea S. Cupp

Testis development from an indifferent gonad is a critical step in embryogenesis. A hallmark of testis differentiation is sex-specific vascularization that occurs as endothelial cells migrate from the adjacent mesonephros into the testis to surround Sertoli-germ cell aggregates and induce seminiferous cord formation. Many in vitro experiments have demonstrated that vascular endothelial growth factor A (VEGFA) is a critical regulator of this process. Both inhibitors to VEGFA signal transduction and excess VEGFA isoforms in testis organ cultures impaired vascular development and seminiferous cord formation. However, in vivo models using mice which selectively eliminated all VEGFA isoforms: in Sertoli and germ cells (pDmrt1-Cre;Vegfa(-/-)); Sertoli and Leydig cells (Amhr2-Cre;Vegfa(-/-)) or Sertoli cells (Amh-Cre;Vegfa(-/-) and Sry-Cre;Vegfa(-/-)) displayed testes with observably normal cords and vasculature at postnatal day 0 and onwards. Embryonic testis development may be delayed in these mice; however, the postnatal data indicate that VEGFA isoforms secreted from Sertoli, Leydig or germ cells are not required for testis morphogenesis within the mouse. A Vegfa signal transduction array was employed on postnatal testes from Sry-Cre;Vegfa(-/-) versus controls. Ptgs1 (Cox1) was the only upregulated gene (fivefold). COX1 stimulates angiogenesis and upregulates, VEGFA, Prostaglandin E2 (PGE2) and PGD2. Thus, other gene pathways may compensate for VEGFA loss, similar to multiple independent mechanisms to maintain SOX9 expression. Multiple independent mechanism that induce vascular development in the testis may contribute to and safeguard the sex-specific vasculature development responsible for inducing seminiferous cord formation, thus ensuring appropriate testis morphogenesis in the male.


PLOS ONE | 2015

Loss of Vascular Endothelial Growth Factor A (VEGFA) Isoforms in Granulosa Cells Using pDmrt-1-Cre or Amhr2-Cre Reduces Fertility by Arresting Follicular Development and by Reducing Litter Size in Female Mice

Kevin M. Sargent; Ningxia Lu; Debra T. Clopton; William E. Pohlmeier; Vanessa M. Brauer; Napoleone Ferrara; David W. Silversides; Andrea S. Cupp

Because VEGFA has been implicated in follicle development, the objective of this study was to determine the effects of granulosa- and germ cell-specific VEGFA loss on ovarian morphogenesis, function, and female fertility. pDmrt1-Cre mice were mated to floxed VEGFA mice to develop granulosa-/germ cell-specific knockouts (pDmrt1-Cre;Vegfa -/-). The time from mating to first parturition was increased when pDmrt1-Cre;Vegfa -/- females were mated to control males (P = 0.0008) and tended to be longer for heterozygous females (P < 0.07). Litter size was reduced for pDmrt1-Cre;Vegfa -/- females (P < 0.007). The time between the first and second parturitions was also increased for heterozygous females (P < 0.04) and tended to be increased for pDmrt1-Cre;Vegfa -/- females (P < 0.07). pDmrt1-Cre;Vegfa -/- females had smaller ovaries (P < 0.04), reduced plasma estradiol (P < 0.007), fewer developing follicles (P < 0.008) and tended to have fewer corpora lutea (P < 0.08). Expression of Igf1r was reduced (P < 0.05); expression of Foxo3a tended to be increased (P < 0.06); and both Fshr (P < 0.1) and Sirt6 tended to be reduced (P < 0.06) in pDmrt1-Cre;Vegfa -/- ovaries. To compare VEGFA knockouts, we generated Amhr2-Cre;Vegfa -/- mice that required more time from mating to first parturition (P < 0.003) with variable ovarian size. Both lines had more apoptotic granulosa cells, and vascular staining did not appear different. Taken together these data indicate that the loss of all VEGFA isoforms in granulosa/germ cells (proangiogenic and antiangiogenic) causes subfertility by arresting follicular development, resulting in reduced ovulation rate and fewer pups per litter.


Archive | 2011

Granulosa Cell Gene Expression is Altered in Follicles from Cows with Differing Reproductive Longevity

Andrea S. Cupp; Jennifer R. Wood; Renee M. McFee; Racheal Slattery; Kevin A. Beavers; William E. Pohlmeier; Kevin M. Sargent; Ningxia Lu; Jacqueline E. Smith; Jill G. Kerl; Vanessa M. Brauer; Adam F. Summers; Stetson P. Weber; Robert A. Cushman


Journal of Animal Science | 2016

335 Divergent VEGFA signaling determines spermatogonial stem cell fate.

Kevin M. Sargent; J. R. Essink; Meredith L. Bremer; William E. Pohlmeier; M. M. Laughlin; Scott G. Kurz; Andrea S. Cupp


PLOS ONE | 2015

pDmrt1-Cre;Vegfa -/- and control ovary histology.

Kevin M. Sargent; Ningxia Lu; Debra T. Clopton; William E. Pohlmeier; Vanessa M. Brauer; Napoleone Ferrara; David W. Silversides; Andrea S. Cupp


Archive | 2015

VEGFA: Just one of multiple mechanisms for Sex-Specific Vascular Development within the testis?

Kevin M. Sargent; Renee M. Sargent; Renata Spuri Gomes; Andrea S. Cupp


Archive | 2014

Androgen Excess in Beef Cows Results in Altered Theca Cell Gene Expression and Fertilityand

Adam F. Summers; William E. Pohlmeier; Vanessa M. Brauer; Kevin M. Sargent; Renee M. McFee; Scott G. Kurz; Robert A. Cushman; Jennifer R. Wood; Andrea S. Cupp

Collaboration


Dive into the Kevin M. Sargent's collaboration.

Top Co-Authors

Avatar

Andrea S. Cupp

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

William E. Pohlmeier

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Vanessa M. Brauer

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Ningxia Lu

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Renee M. McFee

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Adam F. Summers

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Jennifer R. Wood

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Debra T. Clopton

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert A. Cushman

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge