Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin M. Vannella is active.

Publication


Featured researches published by Kevin M. Vannella.


Immunity | 2016

Macrophages in Tissue Repair, Regeneration, and Fibrosis

Thomas A. Wynn; Kevin M. Vannella

Inflammatory monocytes and tissue-resident macrophages are key regulators of tissue repair, regeneration, and fibrosis. After tissue injury, monocytes and macrophages undergo marked phenotypic and functional changes to play critical roles during the initiation, maintenance, and resolution phases of tissue repair. Disturbances in macrophage function can lead to aberrant repair, such that uncontrolled production of inflammatory mediators and growth factors, deficient generation of anti-inflammatory macrophages, or failed communication between macrophages and epithelial cells, endothelial cells, fibroblasts, and stem or tissue progenitor cells all contribute to a state of persistent injury, and this could lead to the development of pathological fibrosis. In this review, we discuss the mechanisms that instruct macrophages to adopt pro-inflammatory, pro-wound-healing, pro-fibrotic, anti-inflammatory, anti-fibrotic, pro-resolving, and tissue-regenerating phenotypes after injury, and we highlight how some of these mechanisms and macrophage activation states could be exploited therapeutically.


Science Translational Medicine | 2015

TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma

David F. Choy; Kevin M. Hart; Lee A. Borthwick; Aarti Shikotra; Deepti R. Nagarkar; Salman Siddiqui; Guiquan Jia; Chandra M. Ohri; Emma Doran; Kevin M. Vannella; Claire A. Butler; Beverley Hargadon; Joshua Sciurba; Richard L. Gieseck; Robert W. Thompson; Sandra White; Alexander R. Abbas; Janet Jackman; Lawren C. Wu; Jackson G. Egen; Liam Heaney; Thirumalai R. Ramalingam; Joseph R. Arron; Thomas A. Wynn; Peter Bradding

Concurrent blockade of IL-13 and IL-17A may improve control of asthma. A tale of two asthmas Classifying diseases according to symptoms is rapidly becoming a thing of the past. Targeted therapeutics have shown us that sets of symptoms can be caused by different pathogenic mechanisms. Now, Choy et al. demonstrate that asthma can be divided into three immunological clusters: TH2-high, TH17-high, and TH2/17-low. The TH2-high and TH17-high clusters were inversely correlated in patients. Moreover, neutralizing one signature promoted the other in a mouse model of asthma. These data suggest that combination therapies targeting both pathways may better treat asthmatic individuals. Increasing evidence suggests that asthma is a heterogeneous disorder regulated by distinct molecular mechanisms. In a cross-sectional study of asthmatics of varying severity (n = 51), endobronchial tissue gene expression analysis revealed three major patient clusters: TH2-high, TH17-high, and TH2/17-low. TH2-high and TH17-high patterns were mutually exclusive in individual patient samples, and their gene signatures were inversely correlated and differentially regulated by interleukin-13 (IL-13) and IL-17A. To understand this dichotomous pattern of T helper 2 (TH2) and TH17 signatures, we investigated the potential of type 2 cytokine suppression in promoting TH17 responses in a preclinical model of allergen-induced asthma. Neutralization of IL-4 and/or IL-13 resulted in increased TH17 cells and neutrophilic inflammation in the lung. However, neutralization of IL-13 and IL-17 protected mice from eosinophilia, mucus hyperplasia, and airway hyperreactivity and abolished the neutrophilic inflammation, suggesting that combination therapies targeting both pathways may maximize therapeutic efficacy across a patient population comprising both TH2 and TH17 endotypes.


PLOS Pathogens | 2014

Incomplete Deletion of IL-4Rα by LysMCre Reveals Distinct Subsets of M2 Macrophages Controlling Inflammation and Fibrosis in Chronic Schistosomiasis

Kevin M. Vannella; Luke Barron; Lee A. Borthwick; Kristen N. Kindrachuk; Prakash Babu Narasimhan; Kevin M. Hart; Robert W. Thompson; Sandra White; Allen W. Cheever; Thirumalai R. Ramalingam; Thomas A. Wynn

Mice expressing a Cre recombinase from the lysozyme M-encoding locus (Lyz2) have been widely used to dissect gene function in macrophages and neutrophils. Here, we show that while naïve resident tissue macrophages from IL-4Rαflox/deltaLysMCre mice almost completely lose IL-4Rα function, a large fraction of macrophages elicited by sterile inflammatory stimuli, Schistosoma mansoni eggs, or S. mansoni infection, fail to excise Il4rα. These F4/80hiCD11bhi macrophages, in contrast to resident tissue macrophages, express lower levels of Lyz2 explaining why this population resists LysMCre-mediated deletion. We show that in response to IL-4 and IL-13, Lyz2loIL-4Rα+ macrophages differentiate into an arginase 1-expressing alternatively-activated macrophage (AAM) population, which slows the development of lethal fibrosis in schistosomiasis. In contrast, we identified Lyz2hiIL-4Rα+ macrophages as the key subset of AAMs mediating the downmodulation of granulomatous inflammation in chronic schistosomiasis. Our observations reveal a limitation on using a LysMCre mouse model to study gene function in inflammatory settings, but we utilize this limitation as a means to demonstrate that distinct populations of alternatively activated macrophages control inflammation and fibrosis in chronic schistosomiasis.


Mucosal Immunology | 2016

Macrophages are critical to the maintenance of IL-13-dependent lung inflammation and fibrosis.

Lee A. Borthwick; Luke Barron; Kevin M. Hart; Kevin M. Vannella; Robert W. Thompson; Sandra Oland; Allen W. Cheever; Joshua Sciurba; Thirumalai R. Ramalingam; Andrew J. Fisher; Thomas A. Wynn

The roles of macrophages in type 2-driven inflammation and fibrosis remain unclear. Here, using CD11b-Diphtheria Toxin Receptor (DTR) transgenic mice and three models of IL-13-dependent inflammation, fibrosis, and immunity, we show that CD11b+ F4/80+ Ly6C+ macrophages are required for the maintenance of type-2 immunity within affected tissues but not secondary lymphoid organs. Direct depletion of macrophages during the maintenance or resolution phases of secondary S. mansoni egg-induced granuloma formation caused a profound decrease in inflammation, fibrosis, and type-2 gene expression. Additional studies with CD11c-DTR and CD11b/CD11c-DTR double transgenic mice suggested that macrophages but not dendritic cells were critical. Mechanistically, macrophage depletion impaired effector CD4+ Th2 cell homing and activation within the inflamed lung. Depletion of CD11b+ F4/80+ Ly6C+ macrophages similarly reduced house dust mite-induced allergic lung inflammation and suppressed IL-13-dependent immunity to the nematode parasite Nippostrongylus brasiliensis. Consequently, therapeutic strategies targeting macrophages offer a novel approach to ameliorate established type-2 inflammatory diseases.


Science Translational Medicine | 2016

Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine-driven inflammation and fibrosis

Kevin M. Vannella; Thirumalai R. Ramalingam; Lee A. Borthwick; Luke Barron; Kevin M. Hart; Robert W. Thompson; Kristen N. Kindrachuk; Allen W. Cheever; Sandra White; Alison L. Budelsky; Michael R. Comeau; Dirk E. Smith; Thomas A. Wynn

Combined blockade of TSLP, IL-25, and IL-33 may be needed to treat some forms of progressive inflammation and fibrosis. Teaming up against inflammation and fibrosis The cult of the individual extends to new therapies—new targets are identified and validated (or not) on a one-on-one basis. However, no protein is an island, and failure with a monotherapy does not invalidate a target. Now, Vannella et al. demonstrate that this is indeed the case for some types of progessive type 2 inflammation and fibrosis. Using a variety of models including helminth infection and allergic lung inflammation, the authors show that individual disruption of the type 2 inflammatory molecules thymic stromal lymphopoietin (TLSP), interleukin-25 (IL-25), and IL-33 had no effect on the progression of type 2–dependent inflammation or fibrosis. However, targeting all three simultaneously blocked disease development and progression. Thymic stromal lymphopoietin (TSLP), interleukin-25 (IL-25), and IL-33 are important initiators of type 2–associated mucosal inflammation and immunity. However, their role in the maintenance of progressive type 2 inflammation and fibrosis is much less clear. Using chronic models of helminth infection and allergic lung inflammation, we show that collective disruption of TSLP, IL-25, and IL-33 signaling suppresses chronic and progressive type 2 cytokine–driven inflammation and fibrosis. In a schistosome lung granuloma model or during chronic Schistosoma mansoni infection in the liver, individual ablation of TSLP, IL-25, or IL-33/ST2 had no impact on the development of IL-4/IL-13–dependent inflammation or fibrosis. However, significant reductions in granuloma-associated eosinophils, hepatic fibrosis, and IL-13–producing type 2 innate lymphoid cells (ILC2s) were observed when signaling of all three mediators was simultaneously disrupted. Combined blockade through monoclonal antibody (mAb) treatment also reduced IL-5 and IL-13 expression during primary and secondary granuloma formation in the lungs. In a model of chronic house dust mite–induced allergic lung inflammation, combined mAb treatment did not decrease established inflammation or fibrosis. TSLP/IL-33 double-knockout mice treated with anti–IL-25 mAb during priming, however, displayed decreased inflammation, mucus production, and lung remodeling in the chronic phase. Together, these studies reveal partially redundant roles for TSLP, IL-25, and IL-33 in the maintenance of type 2 pathology and suggest that in some settings, early combined targeting of these mediators is necessary to ameliorate progressive type 2–driven disease.


Annual Review of Physiology | 2017

Mechanisms of Organ Injury and Repair by Macrophages

Kevin M. Vannella; Thomas A. Wynn

Macrophages regulate tissue regeneration following injury. They can worsen tissue injury by producing reactive oxygen species and other toxic mediators that disrupt cell metabolism, induce apoptosis, and exacerbate ischemic injury. However, they also produce a variety of growth factors, such as IGF-1, VEGF-α, TGF-β, and Wnt proteins that regulate epithelial and endothelial cell proliferation, myofibroblast activation, stem and tissue progenitor cell differentiation, and angiogenesis. Proresolving macrophages in turn restore tissue homeostasis by functioning as anti-inflammatory cells, and macrophage-derived matrix metalloproteinases regulate fibrin and collagen turnover. However, dysregulated macrophage function impairs wound healing and contributes to the development of fibrosis. Consequently, the mechanisms that regulate these different macrophage activation states have become active areas of research. In this review, we discuss the common and unique mechanisms by which macrophages instruct tissue repair in the liver, nervous system, heart, lung, skeletal muscle, and intestine and illustrate how macrophages might be exploited therapeutically.


PLOS Pathogens | 2012

Chitinase Dependent Control of Protozoan Cyst Burden in the Brain

J. Philip Nance; Kevin M. Vannella; Danielle Worth; Clément N. David; David Carter; Shahani Noor; Cedric Hubeau; Lori Fitz; Thomas E. Lane; Thomas A. Wynn; Emma H. Wilson

Chronic infections represent a continuous battle between the hosts immune system and pathogen replication. Many protozoan parasites have evolved a cyst lifecycle stage that provides it with increased protection from environmental degradation as well as endogenous host mechanisms of attack. In the case of Toxoplasma gondii, these cysts are predominantly found in the immune protected brain making clearance of the parasite more difficult and resulting in a lifelong infection. Currently, little is known about the nature of the immune response stimulated by the presence of these cysts or how they are able to propagate. Here we establish a novel chitinase-dependent mechanism of cyst control in the infected brain. Despite a dominant Th1 immune response during Toxoplasma infection there exists a population of alternatively activated macrophages (AAMØ) in the infected CNS. These cells are capable of cyst lysis via the production of AMCase as revealed by live imaging, and this chitinase is necessary for protective immunity within the CNS. These data demonstrate chitinase activity in the brain in response to a protozoan pathogen and provide a novel mechanism to facilitate cyst clearance during chronic infections.


Nature Immunology | 2016

Acidic chitinase primes the protective immune response to gastrointestinal nematodes

Kevin M. Vannella; Thirumalai R. Ramalingam; Kevin M. Hart; Rafael de Queiroz Prado; Joshua Sciurba; Luke Barron; Lee A. Borthwick; Allen Smith; Margaret M. Mentink-Kane; Sandra White; Robert W. Thompson; Allen W. Cheever; Kevin W. Bock; Ian N. Moore; Lori Fitz; Joseph F. Urban; Thomas A. Wynn

Acidic mammalian chitinase (AMCase) is known to be induced by allergens and helminths, yet its role in immunity is unclear. Using AMCase-deficient mice, we show that AMCase deficiency reduced the number of group 2 innate lymphoid cells during allergen challenge but was not required for establishment of type 2 inflammation in the lung in response to allergens or helminths. In contrast, AMCase-deficient mice showed a profound defect in type 2 immunity following infection with the chitin-containing gastrointestinal nematodes Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri. The impaired immunity was associated with reduced mucus production and decreased intestinal expression of the signature type 2 response genes Il13, Chil3, Retnlb, and Clca1. CD103+ dendritic cells, which regulate T cell homing, were also reduced in mesenteric lymph nodes of infected AMCase-deficient mice. Thus, AMCase functions as a critical initiator of protective type 2 responses to intestinal nematodes but is largely dispensable for allergic responses in the lung.


The Journal of Pathology | 2016

Enhanced protection from fibrosis and inflammation in the combined absence of IL-13 and IFN-γ.

Thirumalai R. Ramalingam; Richard L. Gieseck; Thomas H. Acciani; Kevin M. Hart; Allen W. Cheever; Margaret M. Mentink-Kane; Kevin M. Vannella; Thomas A. Wynn

Persistent or dysregulated IL‐13 responses are key drivers of fibrosis in multiple organ systems, and this identifies this cytokine as an important therapeutic target. Nevertheless, the mechanisms by which IL‐13 blockade leads to the amelioration of fibrosis remain unclear. Because IFN‐γ exhibits potent anti‐fibrotic activity, and IL‐4Rα signalling antagonizes IFN‐γ effector function, compensatory increases in IFN‐γ activity following IL‐13/IL‐4Rα blockade might contribute to the reduction in fibrosis. To investigate the role of IFN‐γ, we developed novel IL‐13−/−/IFN‐γ−/− double cytokine‐deficient mice and examined disease progression in models of type 2‐driven fibrosis. As predicted, we showed that fibrosis in the lung and liver are both highly dependent on IL‐13. We also observed increased IFN‐γ production and inflammatory activity in the tissues of IL‐13‐deficient mice. Surprisingly, however, an even greater reduction in fibrosis was observed in IL‐13/IFN‐γ double deficient mice, most notably in the livers of mice chronically infected with Schistosoma mansoni. The increased protection was associated with marked decreases in Tgfb1, Mmp12, and Timp1 mRNA expression in the tissues; reduced inflammation; and decreased expression of important pro‐inflammatory mediators such as TNF‐α. Experiments conducted with neutralizing monoclonal antibodies to IL‐13 and IFN‐γ validated the findings with the genetically deficient mice. Together, these studies demonstrate that the reduction in fibrosis observed when IL‐13 signalling is suppressed is not dependent on increased IFN‐γ activity. Instead, by reducing compensatory increases in type 1‐associated inflammation, therapeutic strategies that block IFN‐γ and IL‐13 activity simultaneously can confer greater protection from progressive fibrosis than IL‐13 blockade alone. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.


Science Translational Medicine | 2017

Type 2 immunity is protective in metabolic disease but exacerbates NAFLD collaboratively with TGF-β

Kevin M. Hart; Thomas Fabre; Joshua Sciurba; Richard L. Gieseck; Lee A. Borthwick; Kevin M. Vannella; Thomas H. Acciani; Rafael de Queiroz Prado; Robert W. Thompson; Sandra White; Geneviève Soucy; Marc Bilodeau; Thirumalai R. Ramalingam; Joseph R. Arron; Naglaa H. Shoukry; Thomas A. Wynn

Development of NASH fibrosis is accompanied by accumulation of hepatic eosinophils and driven by TGF-β and profibrotic type 2 inflammation. Opposing cytokines in obesity and fibrosis Polarized cytokine networks can drive immunopathogenesis forward. Obesity that leads to liver fibrosis involves type 1 cytokines, so Hart et al. expected obese mice prone to type 1 cytokine responses to experience more pronounced fibrosis. Instead, they saw that these mice were resistant to steatohepatitis. Fibrotic livers from mice and human biopsies showed type 2 inflammation and recruitment of eosinophils, unlike the inflammation observed in the adipose tissue during obesity. These findings reveal that cytokine activity that is beneficial for the homeostasis of one tissue can be detrimental to another. Nonalcoholic fatty liver disease (NAFLD) is now the most common progressive liver disease in developed countries and is the second leading indication for liver transplantation due to the extensive fibrosis it causes. NAFLD progression is thought to be tied to chronic low-level type 1 inflammation originating in the adipose tissue during obesity; however, the specific immunological mechanisms regulating the progression of NAFLD-associated fibrosis in the liver are unclear. To investigate the immunopathogenesis of NAFLD more completely, we investigated adipose dysfunction, nonalcoholic steatohepatitis (NASH), and fibrosis in mice that develop polarized type 1 or type 2 immune responses. Unexpectedly, obese interleukin-10 (IL-10)/IL-4–deficient mice (type 1–polarized) were highly resistant to NASH. This protection was associated with an increased hepatic interferon-γ (IFN-γ) signature. Conversely, IFN-γ–deficient mice progressed rapidly to NASH with evidence of fibrosis dependent on transforming growth factor–β (TGF-β) and IL-13 signaling. Unlike increasing type 1 inflammation and the marked loss of eosinophils seen in expanding adipose tissue, progression of NASH was associated with increasing eosinophilic type 2 liver inflammation in mice and human patient biopsies. Finally, simultaneous inhibition of TGF-β and IL-13 signaling attenuated the fibrotic machinery more completely than TGF-β alone in NAFLD-associated fibrosis. Thus, although type 2 immunity maintains healthy metabolic signaling in adipose tissues, it exacerbates the progression of NAFLD collaboratively with TGF-β in the liver.

Collaboration


Dive into the Kevin M. Vannella's collaboration.

Top Co-Authors

Avatar

Thomas A. Wynn

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kevin M. Hart

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert W. Thompson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sandra White

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joshua Sciurba

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Luke Barron

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Richard L. Gieseck

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge