Kevin Mayo
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kevin Mayo.
Nature Genetics | 2009
Denise Harold; Richard Abraham; Paul Hollingworth; Rebecca Sims; Amy Gerrish; Marian Lindsay Hamshere; Jaspreet Singh Pahwa; Valentina Moskvina; Kimberley Dowzell; Amy Williams; Nicola L. Jones; Charlene Thomas; Alexandra Stretton; Angharad R. Morgan; Simon Lovestone; John Powell; Petroula Proitsi; Michelle K. Lupton; Carol Brayne; David C. Rubinsztein; Michael Gill; Brian A. Lawlor; Aoibhinn Lynch; Kevin Morgan; Kristelle Brown; Peter Passmore; David Craig; Bernadette McGuinness; Stephen Todd; Clive Holmes
We undertook a two-stage genome-wide association study (GWAS) of Alzheimers disease (AD) involving over 16,000 individuals, the most powerful AD GWAS to date. In stage 1 (3,941 cases and 7,848 controls), we replicated the established association with the apolipoprotein E (APOE) locus (most significant SNP, rs2075650, P = 1.8 × 10−157) and observed genome-wide significant association with SNPs at two loci not previously associated with the disease: at the CLU (also known as APOJ) gene (rs11136000, P = 1.4 × 10−9) and 5′ to the PICALM gene (rs3851179, P = 1.9 × 10−8). These associations were replicated in stage 2 (2,023 cases and 2,340 controls), producing compelling evidence for association with Alzheimers disease in the combined dataset (rs11136000, P = 8.5 × 10−10, odds ratio = 0.86; rs3851179, P = 1.3 × 10−9, odds ratio = 0.86).
Archive | 2009
Denise Harold; Richard Abraham; Paul Hollingworth; Rebecca Sims; Amy Gerrish; Marian Lindsay Hamshere; Jaspreet Sing Pahwa; Valentina Moskvina; Kimberley Dowzell; Amy Williams; Nicola L. Jones; Charlene Thomas; Alexandra Stretton; Angharad R. Morgan; Simon Lovestone; John Powell; Petroula Proitsi; Michelle K. Lupton; Carol Brayne; David C. Rubinsztein; Michael Gill; Brian A. Lawlor; Aoibhinn Lynch; Kevin Morgan; Kristelle Brown; Peter Passmore; David Craig; Bernadette McGuinness; Stephen Todd; Clive Holmes
We undertook a two-stage genome-wide association study (GWAS) of Alzheimers disease (AD) involving over 16,000 individuals, the most powerful AD GWAS to date. In stage 1 (3,941 cases and 7,848 controls), we replicated the established association with the apolipoprotein E (APOE) locus (most significant SNP, rs2075650, P = 1.8 × 10−157) and observed genome-wide significant association with SNPs at two loci not previously associated with the disease: at the CLU (also known as APOJ) gene (rs11136000, P = 1.4 × 10−9) and 5′ to the PICALM gene (rs3851179, P = 1.9 × 10−8). These associations were replicated in stage 2 (2,023 cases and 2,340 controls), producing compelling evidence for association with Alzheimers disease in the combined dataset (rs11136000, P = 8.5 × 10−10, odds ratio = 0.86; rs3851179, P = 1.3 × 10−9, odds ratio = 0.86).
Annals of Neurology | 2008
Michael A. Gitcho; Robert H. Baloh; Sumi Chakraverty; Kevin Mayo; Joanne Norton; Denise Levitch; Kimmo J. Hatanpaa; Charles L. White; Eileen H. Bigio; Richard J. Caselli; Matt Baker; Muhammad Al-Lozi; John C. Morris; Alan Pestronk; Rosa Rademakers; Alison Goate; Nigel J. Cairns
To identify novel causes of familial neurodegenerative diseases, we extended our previous studies of TAR DNA‐binding protein 43 (TDP‐43) proteinopathies to investigate TDP‐43 as a candidate gene in familial cases of motor neuron disease. Sequencing of the TDP‐43 gene led to the identification of a novel missense mutation, Ala‐315‐Thr, which segregates with all affected members of an autosomal dominant motor neuron disease family. The mutation was not found in 1,505 healthy control subjects. The discovery of a missense mutation in TDP‐43 in a family with dominantly inherited motor neuron disease provides evidence of a direct link between altered TDP‐43 function and neurodegeneration. Ann Neurol 2008
American Journal of Psychiatry | 2008
Laura J. Bierut; Jerry A. Stitzel; Jen C. Wang; Anthony L. Hinrichs; Richard A. Grucza; Xiaoling Xuei; Nancy L. Saccone; Scott F. Saccone; Sarah Bertelsen; Louis Fox; William J. Horton; Naomi Breslau; John Budde; C. Robert Cloninger; Danielle M. Dick; Tatiana Foroud; Dorothy K. Hatsukami; Victor Hesselbrock; Eric O. Johnson; John Kramer; Samuel Kuperman; Pamela A. F. Madden; Kevin Mayo; John I. Nurnberger; Ovide F. Pomerleau; Bernice Porjesz; Oliver Reyes; Marc A. Schuckit; Gary E. Swan; Jay A. Tischfield
OBJECTIVEnA recent study provisionally identified numerous genetic variants as risk factors for the transition from smoking to the development of nicotine dependence, including an amino acid change in the alpha5 nicotinic cholinergic receptor (CHRNA5). The purpose of this study was to replicate these findings in an independent data set and more thoroughly investigate the role of genetic variation in the cluster of physically linked nicotinic receptors, CHRNA5-CHRNA3-CHRNB4, and the risk of smoking.nnnMETHODnIndividuals from 219 European American families (N=2,284) were genotyped across this gene cluster to test the genetic association with smoking. The frequency of the amino acid variant (rs16969968) was studied in 995 individuals from diverse ethnic populations. In vitro studies were performed to directly test whether the amino acid variant in the CHRNA5 influences receptor function.nnnRESULTSnA genetic variant marking an amino acid change showed association with the smoking phenotype (p=0.007). This variant is within a highly conserved region across nonhuman species, but its frequency varied across human populations (0% in African populations to 37% in European populations). Furthermore, functional studies demonstrated that the risk allele decreased response to a nicotine agonist. A second independent finding was seen at rs578776 (p=0.003), and the functional significance of this association remains unknown.nnnCONCLUSIONSnThis study confirms that at least two independent variants in this nicotinic receptor gene cluster contribute to the development of habitual smoking in some populations, and it underscores the importance of multiple genetic variants contributing to the development of common diseases in various populations.
PLOS ONE | 2010
Lesley Jones; Peter Holmans; Marian Lindsay Hamshere; Denise Harold; Valentina Moskvina; Dobril Ivanov; Andrew Pocklington; Richard Abraham; Paul Hollingworth; Rebecca Sims; Amy Gerrish; Jaspreet Singh Pahwa; Nicola L. Jones; Alexandra Stretton; Angharad R. Morgan; Simon Lovestone; John Powell; Petroula Proitsi; Michelle K. Lupton; Carol Brayne; David C. Rubinsztein; Michael Gill; Brian A. Lawlor; Aoibhinn Lynch; Kevin Morgan; Kristelle Brown; Peter Passmore; David Craig; Bernadette McGuinness; Stephen Todd
Background Late Onset Alzheimers disease (LOAD) is the leading cause of dementia. Recent large genome-wide association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD pathophysiological processes. Methodology We applied a recently developed tool for mining GWAS data for biologically meaningful information to a LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset. Principal Findings We found a significant overrepresentation of association signals in pathways related to cholesterol metabolism and the immune response in both of the two largest genome-wide association studies for LOAD. Significance Processes related to cholesterol metabolism and the innate immune response have previously been implicated by pathological and epidemiological studies of Alzheimers disease, but it has been unclear whether those findings reflected primary aetiological events or consequences of the disease process. Our independent evidence from two large studies now demonstrates that these processes are aetiologically relevant, and suggests that they may be suitable targets for novel and existing therapeutic approaches.
Nature Medicine | 2007
Abhay P. Sagare; Rashid Deane; Robert D. Bell; Bradley Johnson; Katie Hamm; Ronan Pendu; Andrew Marky; Peter J. Lenting; Zhenhua Wu; Troy Zarcone; Alison Goate; Kevin Mayo; David Perlmutter; Mireia Coma; Zhihui Zhong; Berislav V. Zlokovic
Low-density lipoprotein receptor–related protein-1 (LRP) on brain capillaries clears amyloid β-peptide (Aβ) from brain. Here, we show that soluble circulating LRP (sLRP) provides key endogenous peripheral sink activity for Aβ in humans. Recombinant LRP cluster IV (LRP-IV) bound Aβ in plasma in mice and Alzheimers disease–affected humans with compromised sLRP-mediated Aβ binding, and reduced Aβ-related pathology and dysfunction in a mouse model of Alzheimer disease, suggesting that LRP-IV can effectively replace native sLRP and clear Aβ.
PLOS ONE | 2012
Carlos Cruchaga; Sumitra Chakraverty; Kevin Mayo; Francesco Vallania; Robi D. Mitra; Kelley Faber; Jennifer Williamson; Bird Td; Ramon Diaz-Arrastia; Tatiana Foroud; Bradley F. Boeve; Neill R. Graff-Radford; Pamela L. St. Jean; Michael Lawson; Margaret G. Ehm; Richard Mayeux; Alison Goate
Pathogenic mutations in APP, PSEN1, PSEN2, MAPT and GRN have previously been linked to familial early onset forms of dementia. Mutation screening in these genes has been performed in either very small series or in single families with late onset AD (LOAD). Similarly, studies in single families have reported mutations in MAPT and GRN associated with clinical AD but no systematic screen of a large dataset has been performed to determine how frequently this occurs. We report sequence data for 439 probands from late-onset AD families with a history of four or more affected individuals. Sixty sequenced individuals (13.7%) carried a novel or pathogenic mutation. Eight pathogenic variants, (one each in APP and MAPT, two in PSEN1 and four in GRN) three of which are novel, were found in 14 samples. Thirteen additional variants, present in 23 families, did not segregate with disease, but the frequency of these variants is higher in AD cases than controls, indicating that these variants may also modify risk for disease. The frequency of rare variants in these genes in this series is significantly higher than in the 1,000 genome project (pu200a=u200a5.09×10−5; ORu200a=u200a2.21; 95%CIu200a=u200a1.49–3.28) or an unselected population of 12,481 samples (pu200a=u200a6.82×10−5; ORu200a=u200a2.19; 95%CIu200a=u200a1.347–3.26). Rare coding variants in APP, PSEN1 and PSEN2, increase risk for or cause late onset AD. The presence of variants in these genes in LOAD and early-onset AD demonstrates that factors other than the mutation can impact the age at onset and penetrance of at least some variants associated with AD. MAPT and GRN mutations can be found in clinical series of AD most likely due to misdiagnosis. This study clearly demonstrates that rare variants in these genes could explain an important proportion of genetic heritability of AD, which is not detected by GWAS.
PLOS Genetics | 2010
Carlos Cruchaga; John Kauwe; Kevin Mayo; Noah Spiegel; Sarah Bertelsen; Petra Nowotny; Aarti R. Shah; Richard Abraham; Paul Hollingworth; Denise Harold; Michael John Owen; Julie Williams; Simon Lovestone; Elaine R. Peskind; Ge Li; James B. Leverenz; Douglas Galasko; John C. Morris; Anne M. Fagan; David M. Holtzman; Alison Goate
Alzheimers Disease (AD) is a complex and multifactorial disease. While large genome-wide association studies have had some success in identifying novel genetic risk factors for AD, case-control studies are less likely to uncover genetic factors that influence progression of disease. An alternative approach to identifying genetic risk for AD is the use of quantitative traits or endophenotypes. The use of endophenotypes has proven to be an effective strategy, implicating genetic risk factors in several diseases, including anemia, osteoporosis and heart disease. In this study we identify a genetic factor associated with the rate of decline in AD patients and present a methodology for identification of other such factors. We have used an established biomarker for AD, cerebrospinal fluid (CSF) tau phosphorylated at threonine 181 (ptau181) levels as an endophenotype for AD, identifying a SNP, rs1868402, in the gene encoding the regulatory sub-unit of protein phosphatase B, associated with CSF ptau181 levels in two independent CSF series . We show no association of rs1868402 with risk for AD or age at onset, but detected a very significant association with rate of progression of disease that is consistent in two independent series . Our analyses suggest that genetic variants associated with CSF ptau181 levels may have a greater impact on rate of progression, while genetic variants such as APOE4, that are associated with CSF Aβ42 levels influence risk and onset but not the rate of progression. Our results also suggest that drugs that inhibit or decrease tau phosphorylation may slow cognitive decline in individuals with very mild dementia or delay the appearance of memory problems in elderly individuals with low CSF Aβ42 levels. Finally, we believe genome-wide association studies of CSF tau/ptau181 levels should identify novel genetic variants which will likely influence rate of progression of AD.
Neurogenetics | 2009
John Kauwe; Jun Wang; Kevin Mayo; John C. Morris; Anne M. Fagan; David M. Holtzman; Alison Goate
The use of quantitative endophenotypes in genetic studies may provide greater power, allowing for the use of powerful statistical methods and a biological model for the effects of the disease-associated genetic variation. Cerebrospinal fluid (CSF) amyloid beta (Aβ) levels are promising endophenotypes for late-onset Alzheimer’s disease (LOAD) and show correlation with LOAD status and Aβ deposition. In this study, we investigated 29 single nucleotide polymorphisms (SNPs) positive in AlzGene (http://www.alzgene.org) meta-analyses, for association with CSF Aβ levels in 313 individuals. This study design makes it possible to replicate reported LOAD risk alleles while contributing novel information about the mechanism by which they might affect that risk. Alleles in ACE, APOE, BDNF, DAPK1, and TF are significantly associated with CSF Aβ levels. In vitro analysis of the TF SNP showed a change in secreted Aβ consistent with the CSF phenotype and known Alzheimer’s disease variants, demonstrating the utility of this approach in identifying SNPs that influence risk for disease via an Aβ-related mechanism.
Annals of Neurology | 2007
John Kauwe; Sarah Jacquart; Sumi Chakraverty; Jun Wang; Kevin Mayo; Anne M. Fagan; David M. Holtzman; John C. Morris; Alison Goate
Aggregation and deposition of amyloid beta (Aβ) in the brain is thought to be central to the pathogenesis of Alzheimers disease (AD). Recent studies suggest that cerebrospinal fluid (CSF) Aβ levels are strongly correlated with AD status and progression, and may be a meaningful endophenotype for AD. Mutations in presenilin 1 (PSEN1) are known to cause AD and change Aβ levels. In this study, we have investigated DNA sequence variation in the presenilin (PSEN1) gene using CSF Aβ levels as an endophenotype for AD.