Kevin McKernan
Life Technologies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kevin McKernan.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Robert L. Strausberg; Elise A. Feingold; Lynette H. Grouse; Jeffery G. Derge; Richard D. Klausner; Francis S. Collins; Lukas Wagner; Carolyn M. Shenmen; Gregory D. Schuler; Stephen F. Altschul; Barry R. Zeeberg; Kenneth H. Buetow; Carl F. Schaefer; Narayan K. Bhat; Ralph F. Hopkins; Heather Jordan; Troy Moore; Steve I. Max; Jun Wang; Florence Hsieh; Luda Diatchenko; Kate Marusina; Andrew A. Farmer; Gerald M. Rubin; Ling Hong; Mark Stapleton; M. Bento Soares; Maria F. Bonaldo; Tom L. Casavant; Todd E. Scheetz
The National Institutes of Health Mammalian Gene Collection (MGC) Program is a multiinstitutional effort to identify and sequence a cDNA clone containing a complete ORF for each human and mouse gene. ESTs were generated from libraries enriched for full-length cDNAs and analyzed to identify candidate full-ORF clones, which then were sequenced to high accuracy. The MGC has currently sequenced and verified the full ORF for a nonredundant set of >9,000 human and >6,000 mouse genes. Candidate full-ORF clones for an additional 7,800 human and 3,500 mouse genes also have been identified. All MGC sequences and clones are available without restriction through public databases and clone distribution networks (see http://mgc.nci.nih.gov).
Nature | 2004
Olivier Jaillon; Jean-Marc Aury; Frédéric Brunet; Jean-Louis Petit; Nicole Stange-Thomann; Evan Mauceli; Laurence Bouneau; Cécile Fischer; Catherine Ozouf-Costaz; Alain Bernot; Sophie Nicaud; David B. Jaffe; Sheila Fisher; Georges Lutfalla; Carole Dossat; Béatrice Segurens; Corinne Dasilva; Marcel Salanoubat; Michael Levy; Nathalie Boudet; Sergi Castellano; Véronique Anthouard; Claire Jubin; Vanina Castelli; Michael Katinka; Benoit Vacherie; Christian Biémont; Zineb Skalli; Laurence Cattolico; Julie Poulain
Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests ∼900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.
Nature | 2011
Jonathan M. Rothberg; Wolfgang Hinz; Todd Rearick; Jonathan Schultz; William Mileski; Mel Davey; John H. Leamon; Kim L. Johnson; Mark James Milgrew; Matthew Edwards; Jeremy Hoon; Jan F. Simons; David Marran; Jason Myers; John F. Davidson; Annika Branting; John Nobile; Bernard P. Puc; David Light; Travis A. Clark; Martin Huber; Jeffrey T. Branciforte; Isaac B. Stoner; Simon Cawley; Michael J. Lyons; Yutao Fu; Nils Homer; Marina Sedova; Xin Miao; Brian Reed
The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.
Nature | 2008
Jeffrey M. Kidd; Gregory M. Cooper; William F. Donahue; Hillary S. Hayden; Nick Sampas; Tina Graves; Nancy F. Hansen; Brian Teague; Can Alkan; Francesca Antonacci; Eric Haugen; Troy Zerr; N. Alice Yamada; Peter Tsang; Tera L. Newman; Eray Tuzun; Ze Cheng; Heather M. Ebling; Nadeem Tusneem; Robert David; Will Gillett; Karen A. Phelps; Molly Weaver; David Saranga; Adrianne D. Brand; Wei Tao; Erik Gustafson; Kevin McKernan; Lin Chen; Maika Malig
Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale—particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high-resolution sequence map of human structural variation—a standard for genotyping platforms and a prelude to future individual genome sequencing projects.
Nature Methods | 2008
Nicole Cloonan; Alistair R. R. Forrest; Gabriel Kolle; Brooke Gardiner; Geoffrey J. Faulkner; Mellissa K Brown; Darrin Taylor; Anita L Steptoe; Shivangi Wani; Graeme Bethel; Alan Robertson; Andrew C. Perkins; Stephen J. Bruce; Clarence Lee; Swati Ranade; Heather E. Peckham; Jonathan M. Manning; Kevin McKernan; Sean M. Grimmond
We developed a massive-scale RNA sequencing protocol, short quantitative random RNA libraries or SQRL, to survey the complexity, dynamics and sequence content of transcriptomes in a near-complete fashion. This method generates directional, random-primed, linear cDNA libraries that are optimized for next-generation short-tag sequencing. We surveyed the poly(A)+ transcriptomes of undifferentiated mouse embryonic stem cells (ESCs) and embryoid bodies (EBs) at an unprecedented depth (10 Gb), using the Applied Biosystems SOLiD technology. These libraries capture the genomic landscape of expression, state-specific expression, single-nucleotide polymorphisms (SNPs), the transcriptional activity of repeat elements, and both known and new alternative splicing events. We investigated the impact of transcriptional complexity on current models of key signaling pathways controlling ESC pluripotency and differentiation, highlighting how SQRL can be used to characterize transcriptome content and dynamics in a quantitative and reproducible manner, and suggesting that our understanding of transcriptional complexity is far from complete.
Nature | 2010
Erin Pleasance; Philip Stephens; Sarah O’Meara; David J. McBride; Alison Meynert; David Jones; Meng-Lay Lin; David Beare; King Wai Lau; Christopher Greenman; Ignacio Varela; Serena Nik-Zainal; Helen Davies; Gonzalo R. Ordóñez; Laura Mudie; Calli Latimer; Sarah Edkins; Lucy Stebbings; Lina Chen; Mingming Jia; Catherine Leroy; John Marshall; Andrew Menzies; Adam Butler; Jon Teague; Jonathon Mangion; Yongming A. Sun; Stephen F. McLaughlin; Heather E. Peckham; Eric F. Tsung
Cancer is driven by mutation. Worldwide, tobacco smoking is the principal lifestyle exposure that causes cancer, exerting carcinogenicity through >60 chemicals that bind and mutate DNA. Using massively parallel sequencing technology, we sequenced a small-cell lung cancer cell line, NCI-H209, to explore the mutational burden associated with tobacco smoking. A total of 22,910 somatic substitutions were identified, including 134 in coding exons. Multiple mutation signatures testify to the cocktail of carcinogens in tobacco smoke and their proclivities for particular bases and surrounding sequence context. Effects of transcription-coupled repair and a second, more general, expression-linked repair pathway were evident. We identified a tandem duplication that duplicates exons 3–8 of CHD7 in frame, and another two lines carrying PVT1–CHD7 fusion genes, indicating that CHD7 may be recurrently rearranged in this disease. These findings illustrate the potential for next-generation sequencing to provide unprecedented insights into mutational processes, cellular repair pathways and gene networks associated with cancer.SUMMARY Cancer is driven by mutation. Worldwide, tobacco smoking is the major lifestyle exposure that causes cancer, exerting carcinogenicity through >60 chemicals that bind and mutate DNA. Using massively parallel sequencing technology, we sequenced a small cell lung cancer cell line, NCI-H209, to explore the mutational burden associated with tobacco smoking. 22,910 somatic substitutions were identified, including 132 in coding exons. Multiple mutation signatures testify to the cocktail of carcinogens in tobacco smoke and their proclivities for particular bases and surrounding sequence context. Effects of transcription-coupled repair and a second, more general expression-linked repair pathway were evident. We identified a tandem duplication that duplicates exons 3-8 of CHD7 in-frame, and another two lines carrying PVT1-CHD7 fusion genes, suggesting that CHD7 may be recurrently rearranged in this disease. These findings illustrate the potential for next-generation sequencing to provide unprecedented insights into mutational processes, cellular repair pathways and gene networks associated with cancer.
Genome Research | 2008
Anton Valouev; Jeffrey K. Ichikawa; Thaisan Tonthat; Jeremy Stuart; Swati Ranade; Heather E. Peckham; Kathy Zeng; Joel A. Malek; Gina Costa; Kevin McKernan; Arend Sidow; Andrew Fire; Steven M. Johnson
Using the massively parallel technique of sequencing by oligonucleotide ligation and detection (SOLiD; Applied Biosystems), we have assessed the in vivo positions of more than 44 million putative nucleosome cores in the multicellular genetic model organism Caenorhabditis elegans. These analyses provide a global view of the chromatin architecture of a multicellular animal at extremely high density and resolution. While we observe some degree of reproducible positioning throughout the genome in our mixed stage population of animals, we note that the major chromatin feature in the worm is a diversity of allowed nucleosome positions at the vast majority of individual loci. While absolute positioning of nucleosomes can vary substantially, relative positioning of nucleosomes (in a repeated array structure likely to be maintained at least in part by steric constraints) appears to be a significant property of chromatin structure. The high density of nucleosomal reads enabled a substantial extension of previous analysis describing the usage of individual oligonucleotide sequences along the span of the nucleosome core and linker. We release this data set, via the UCSC Genome Browser, as a resource for the high-resolution analysis of chromatin conformation and DNA accessibility at individual loci within the C. elegans genome.
Genome Research | 2009
Kevin McKernan; Heather E. Peckham; Gina Costa; Stephen F. McLaughlin; Yutao Fu; Eric F. Tsung; Christopher Clouser; Cisyla Duncan; Jeffrey K. Ichikawa; Clarence Lee; Zheng Zhang; Swati Ranade; Eileen T. Dimalanta; Fiona Hyland; Tanya Sokolsky; Lei Zhang; Andrew Sheridan; Haoning Fu; Cynthia L. Hendrickson; Bin Li; Lev Kotler; Jeremy Stuart; Joel A. Malek; Jonathan M. Manning; Alena A. Antipova; Damon S. Perez; Michael P. Moore; Kathleen Hayashibara; Michael R. Lyons; Robert E. Beaudoin
We describe the genome sequencing of an anonymous individual of African origin using a novel ligation-based sequencing assay that enables a unique form of error correction that improves the raw accuracy of the aligned reads to >99.9%, allowing us to accurately call SNPs with as few as two reads per allele. We collected several billion mate-paired reads yielding approximately 18x haploid coverage of aligned sequence and close to 300x clone coverage. Over 98% of the reference genome is covered with at least one uniquely placed read, and 99.65% is spanned by at least one uniquely placed mate-paired clone. We identify over 3.8 million SNPs, 19% of which are novel. Mate-paired data are used to physically resolve haplotype phases of nearly two-thirds of the genotypes obtained and produce phased segments of up to 215 kb. We detect 226,529 intra-read indels, 5590 indels between mate-paired reads, 91 inversions, and four gene fusions. We use a novel approach for detecting indels between mate-paired reads that are smaller than the standard deviation of the insert size of the library and discover deletions in common with those detected with our intra-read approach. Dozens of mutations previously described in OMIM and hundreds of nonsynonymous single-nucleotide and structural variants in genes previously implicated in disease are identified in this individual. There is more genetic variation in the human genome still to be uncovered, and we provide guidance for future surveys in populations and cancer biopsies.
Science Translational Medicine | 2010
Rebecca J. Leary; Isaac Kinde; Frank Diehl; Kerstin Schmidt; Chris Clouser; Cisilya Duncan; Alena A. Antipova; Clarence Lee; Kevin McKernan; Francisco M. De La Vega; Kenneth W. Kinzler; Bert Vogelstein; Luis A. Diaz; Victor E. Velculescu
Rapid detection of specific aberrant rearrangements in tumors from individuals yields a well-poised technological advance toward personalized oncology. PARE Personalizes Cancer Genetics A diagnosis of cancer shatters the view of the world in an individual’s mind. A world that once moved as comfortably as the pace of one’s own life suddenly moves all too quickly. The individual starts asking questions and searching for possible remedies, and soon learns about the shockingly slow pace of successful cancer research. In the case of solid tumors, conventional surgical excision blanketed with “one size fits all” drug treatments simply fails to be universally effective in the long term. Cancer research has begun to shift to a more focused, personal approach that involves tailoring therapies directly to the complexity inherent in each individual—an area that holds considerable promise. But the differences among individuals are not the only layer of complexity hindering effective treatment. The intrinsic differences that accumulate over the course of tumor progression among similar tumor types hold the key to unlocking a truly personal remedy, a barcode, to cancer. Now, Leary et al. make use of a massively parallel sequencing technique—personalized analysis of rearranged ends (PARE)—to home in on the unique DNA rearrangements present in tumors that differ from the rearrangements present in nontumor DNA from a small subset of individuals. They provide evidence for a highly sensitive, reliable, and cost-effective method, a foundation from which the annotation of large numbers of such tumor signatures will yield a personal cancer code. In an arena that takes small steps, PARE offers a leap forward in the clinical management and treatment of solid tumors, revealing true biomarkers that enable monitoring of individual tumor progression, tailoring of response to therapeutic treatment, and identification of residual disease at a level previously undetectable by current methods. Clinical management of human cancer is dependent on the accurate monitoring of residual and recurrent tumors. The evaluation of patient-specific translocations in leukemias and lymphomas has revolutionized diagnostics for these diseases. We have developed a method, called personalized analysis of rearranged ends (PARE), which can identify translocations in solid tumors. Analysis of four colorectal and two breast cancers with massively parallel sequencing revealed an average of nine rearranged sequences (range, 4 to 15) per tumor. Polymerase chain reaction with primers spanning the breakpoints was able to detect mutant DNA molecules present at levels lower than 0.001% and readily identified mutated circulating DNA in patient plasma samples. This approach provides an exquisitely sensitive and broadly applicable approach for the development of personalized biomarkers to enhance the clinical management of cancer patients.
Genome Research | 2008
Douglas R. Smith; Aaron R. Quinlan; Heather E. Peckham; Kathryn Makowsky; Wei Tao; Betty Woolf; Lei Shen; William F. Donahue; Nadeem Tusneem; Michael Stromberg; Donald A Stewart; Lu Zhang; Swati Ranade; Jason Warner; Clarence Lee; Brittney E. Coleman; Zheng Zhang; Stephen F. McLaughlin; Joel A. Malek; Jon M. Sorenson; Alan Blanchard; Jarrod Chapman; David Hillman; Feng Chen; Daniel S. Rokhsar; Kevin McKernan; Thomas W. Jeffries; Gabor T. Marth; Paul M. Richardson
Forward genetic mutational studies, adaptive evolution, and phenotypic screening are powerful tools for creating new variant organisms with desirable traits. However, mutations generated in the process cannot be easily identified with traditional genetic tools. We show that new high-throughput, massively parallel sequencing technologies can completely and accurately characterize a mutant genome relative to a previously sequenced parental (reference) strain. We studied a mutant strain of Pichia stipitis, a yeast capable of converting xylose to ethanol. This unusually efficient mutant strain was developed through repeated rounds of chemical mutagenesis, strain selection, transformation, and genetic manipulation over a period of seven years. We resequenced this strain on three different sequencing platforms. Surprisingly, we found fewer than a dozen mutations in open reading frames. All three sequencing technologies were able to identify each single nucleotide mutation given at least 10-15-fold nominal sequence coverage. Our results show that detecting mutations in evolved and engineered organisms is rapid and cost-effective at the whole-genome level using new sequencing technologies. Identification of specific mutations in strains with altered phenotypes will add insight into specific gene functions and guide further metabolic engineering efforts.