Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin P. Byrne is active.

Publication


Featured researches published by Kevin P. Byrne.


Nature | 2006

Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts.

Devin R. Scannell; Kevin P. Byrne; Jonathan L. Gordon; Simon Wong; Kenneth H. Wolfe

A whole-genome duplication occurred in a shared ancestor of the yeast species Saccharomyces cerevisiae, Saccharomyces castellii and Candida glabrata. Here we trace the subsequent losses of duplicated genes, and show that the pattern of loss differs among the three species at 20% of all loci. For example, several transcription factor genes, including STE12, TEC1, TUP1 and MCM1, are single-copy in S. cerevisiae but are retained in duplicate in S. castellii and C. glabrata. At many loci, different species have lost different members of a duplicated gene pair, so that 4–7% of single-copy genes compared between any two species are not orthologues. This pattern of gene loss provides strong evidence for speciation through a version of the Bateson–Dobzhansky–Muller mechanism, in which the loss of alternative copies of duplicated genes leads to reproductive isolation. We show that the lineages leading to the three species diverged shortly after the whole-genome duplication, during a period of precipitous gene loss. The set of loci at which single-copy paralogues are retained is biased towards genes involved in ribosome biogenesis and genes that evolve slowly, consistent with the hypothesis that reciprocal gene loss is more likely to occur between duplicated genes that are functionally indistinguishable. We propose a simple, unified model in which a single mechanism—passive gene loss—enabled whole-genome duplication and led to the rapid emergence of new yeast species.


PLOS Genetics | 2009

Additions, Losses, and Rearrangements on the Evolutionary Route from a Reconstructed Ancestor to the Modern Saccharomyces cerevisiae Genome

Jonathan L. Gordon; Kevin P. Byrne; Kenneth H. Wolfe

Comparative genomics can be used to infer the history of genomic rearrangements that occurred during the evolution of a species. We used the principle of parsimony, applied to aligned synteny blocks from 11 yeast species, to infer the gene content and gene order that existed in the genome of an extinct ancestral yeast about 100 Mya, immediately before it underwent whole-genome duplication (WGD). The reconstructed ancestral genome contains 4,703 ordered loci on eight chromosomes. The reconstruction is complete except for the subtelomeric regions. We then inferred the series of rearrangement steps that led from this ancestor to the current Saccharomyces cerevisiae genome; relative to the ancestral genome we observe 73 inversions, 66 reciprocal translocations, and five translocations involving telomeres. Some fragile chromosomal sites were reused as evolutionary breakpoints multiple times. We identified 124 genes that have been gained by S. cerevisiae in the time since the WGD, including one that is derived from a hAT family transposon, and 88 ancestral loci at which S. cerevisiae did not retain either of the gene copies that were formed by WGD. Sites of gene gain and evolutionary breakpoints both tend to be associated with tRNA genes and, to a lesser extent, with origins of replication. Many of the gained genes in S. cerevisiae have functions associated with ethanol production, growth in hypoxic environments, or the uptake of alternative nutrient sources.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication

Devin R. Scannell; A. Carolin Frank; Gavin C. Conant; Kevin P. Byrne; Megan Woolfit; Kenneth H. Wolfe

Among yeasts that underwent whole-genome duplication (WGD), Kluyveromyces polysporus represents the lineage most distant from Saccharomyces cerevisiae. By sequencing the K. polysporus genome and comparing it with the S. cerevisiae genome using a likelihood model of gene loss, we show that these species diverged very soon after the WGD, when their common ancestor contained >9,000 genes. The two genomes subsequently converged onto similar current sizes (5,600 protein-coding genes each) and independently retained sets of duplicated genes that are strikingly similar. Almost half of their surviving single-copy genes are not orthologs but paralogs formed by WGD, as would be expected if most gene pairs were resolved independently. In addition, by comparing the pattern of gene loss among K. polysporus, S. cerevisiae, and three other yeasts that diverged after the WGD, we show that the patterns of gene loss changed over time. Initially, both members of a duplicate pair were equally likely to be lost, but loss of the same gene copy in independent lineages was increasingly favored at later time points. This trend parallels an increasing restriction of reciprocal gene loss to more slowly evolving gene pairs over time and suggests that, as duplicate genes diverged, one gene copy became favored over the other. The apparent low initial sequence divergence of the gene pairs leads us to propose that the yeast WGD was probably an autopolyploidization.


Genetics | 2006

Consistent Patterns of Rate Asymmetry and Gene Loss Indicate Widespread Neofunctionalization of Yeast Genes After Whole-Genome Duplication

Kevin P. Byrne; Kenneth H. Wolfe

We investigated patterns of rate asymmetry in sequence evolution among the gene pairs (ohnologs) formed by whole-genome duplication (WGD) in yeast species. By comparing three species (Saccharomyces cerevisiae, Candida glabrata, and S. castellii) that underwent WGD to a nonduplicated outgroup (Kluyveromyces lactis), and by using a synteny framework to establish orthology and paralogy relationships at each duplicated locus, we show that 56% of ohnolog pairs show significantly asymmetric protein sequence evolution. For ohnolog pairs that remain duplicated in two species there is a strong tendency for the faster-evolving copy in one species to be orthologous to the faster copy in the other species, which indicates that the evolutionary rate differences were established before speciation and hence soon after the WGD. We also present evidence that in cases where one ohnolog has been lost from the genome of a post-WGD species, the lost copy was likely to have been the faster-evolving member of the pair prior to its loss. These results suggest that a significant fraction of the retained ohnologs in yeast species underwent neofunctionalization soon after duplication.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Evolutionary erosion of yeast sex chromosomes by mating-type switching accidents

Jonathan L. Gordon; David Armisén; Estelle Proux-Wéra; Seán S. ÓhÉigeartaigh; Kevin P. Byrne; Kenneth H. Wolfe

We investigate yeast sex chromosome evolution by comparing genome sequences from 16 species in the family Saccharomycetaceae, including data from genera Tetrapisispora, Kazachstania, Naumovozyma, and Torulaspora. We show that although most yeast species contain a mating-type (MAT) locus and silent HML and HMR loci structurally analogous to those of Saccharomyces cerevisiae, their detailed organization is highly variable and indicates that the MAT locus is a deletion hotspot. Over evolutionary time, chromosomal genes located immediately beside MAT have continually been deleted, truncated, or transposed to other places in the genome in a process that is gradually shortening the distance between MAT and HML. Each time a gene beside MAT is removed by deletion or transposition, the next gene on the chromosome is brought into proximity with MAT and is in turn put at risk for removal. This process has also continually replaced the triplicated sequence regions, called Z and X, that allow HML and HMR to be used as templates for DNA repair at MAT during mating-type switching. We propose that the deletion and transposition events are caused by evolutionary accidents during mating-type switching, combined with natural selection to keep MAT and HML on the same chromosome. The rate of deletion accelerated greatly after whole-genome duplication, probably because genes were redundant and could be deleted without requiring transposition. We suggest that, despite its mutational cost, switching confers an evolutionary benefit by providing a way for an isolated germinating spore to reform spores if the environment is too poor.


BMC Genomics | 2010

Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser

David A. Fitzpatrick; Peadar O'Gaora; Kevin P. Byrne; Geraldine Butler

BackgroundCandida species are the most common cause of opportunistic fungal infection worldwide. Recent sequencing efforts have provided a wealth of Candida genomic data. We have developed the Candida Gene Order Browser (CGOB), an online tool that aids comparative syntenic analyses of Candida species. CGOB incorporates all available Candida clade genome sequences including two Candida albicans isolates (SC5314 and WO-1) and 8 closely related species (Candida dubliniensis, Candida tropicalis, Candida parapsilosis, Lodderomyces elongisporus, Debaryomyces hansenii, Pichia stipitis, Candida guilliermondii and Candida lusitaniae). Saccharomyces cerevisiae is also included as a reference genome.ResultsCGOB assignments of homology were manually curated based on sequence similarity and synteny. In total CGOB includes 65617 genes arranged into 13625 homology columns. We have also generated improved Candida gene sets by merging/removing partial genes in each genome. Interrogation of CGOB revealed that the majority of tandemly duplicated genes are under strong purifying selection in all Candida species. We identified clusters of adjacent genes involved in the same metabolic pathways (such as catabolism of biotin, galactose and N-acetyl glucosamine) and we showed that some clusters are species or lineage-specific. We also identified one example of intron gain in C. albicans.ConclusionsOur analysis provides an important resource that is now available for the Candida community. CGOB is available at http://cgob.ucd.ie.


Nucleic Acids Research | 2006

Visualizing syntenic relationships among the hemiascomycetes with the Yeast Gene Order Browser

Kevin P. Byrne; Kenneth H. Wolfe

The Yeast Gene Order Browser (YGOB) is an online tool designed to facilitate the comparative genomic visualization and appraisal of synteny within and between the genomes of seven hemiascomycete yeast species. Three of these genomes are polyploid, and hence contain intra-genomic syntenic regions, the correct assembly of which is a particular success of YGOB. Designed to accurately assemble, display and score gene order relationships, YGOB is both an interactive tool for browsing genomic data, and a software engine now being used for evolutionary analyses on a whole-genome scale. Underlying the online interface is the YGOB database, which consists of homology assignments across the species, extensively curated based on sequence similarity and novelly, an appraisal of genomic context (synteny) in multiple genomes. Currently the YGOB database incorporates genome data from Saccharomyces cerevisiae, Candida glabrata, Saccharomyces castellii, Ashbya gossypii, Kluyveromyces lactis, Kluyveromyces waltii and Saccharomyces kluyveri, but the system is scaleable to accommodate additional genomes. This paper discusses the usage and utility of version 1.0 of YGOB, which is publicly available at .


PLOS Genetics | 2011

Mechanisms of Chromosome Number Evolution in Yeast

Jonathan L. Gordon; Kevin P. Byrne; Kenneth H. Wolfe

The whole-genome duplication (WGD) that occurred during yeast evolution changed the basal number of chromosomes from 8 to 16. However, the number of chromosomes in post-WGD species now ranges between 10 and 16, and the number in non-WGD species (Zygosaccharomyces, Kluyveromyces, Lachancea, and Ashbya) ranges between 6 and 8. To study the mechanism by which chromosome number changes, we traced the ancestry of centromeres and telomeres in each species. We observe only two mechanisms by which the number of chromosomes has decreased, as indicated by the loss of a centromere. The most frequent mechanism, seen 8 times, is telomere-to-telomere fusion between two chromosomes with the concomitant death of one centromere. The other mechanism, seen once, involves the breakage of a chromosome at its centromere, followed by the fusion of the two arms to the telomeres of two other chromosomes. The only mechanism by which chromosome number has increased in these species is WGD. Translocations and inversions have cycled telomere locations, internalizing some previously telomeric genes and creating novel telomeric locations. Comparison of centromere structures shows that the length of the CDEII region is variable between species but uniform within species. We trace the complete rearrangement history of the Lachancea kluyveri genome since its common ancestor with Saccharomyces and propose that its exceptionally low level of rearrangement is a consequence of the loss of the non-homologous end joining (NHEJ) DNA repair pathway in this species.


Molecular Biology and Evolution | 2013

Comparative Genome Analysis and Gene Finding in Candida Species Using CGOB

Sarah L. Maguire; Seán S. ÓhÉigeartaigh; Kevin P. Byrne; Markus S. Schröder; Peadar Ó Gaora; Kenneth H. Wolfe; Geraldine Butler

The Candida Gene Order Browser (CGOB) was developed as a tool to visualize and analyze synteny relationships in multiple Candida species, and to provide an accurate, manually curated set of orthologous Candida genes for evolutionary analyses. Here, we describe major improvements to CGOB. The underlying structure of the database has been changed significantly. Genomic features are now based directly on genome annotations rather than on protein sequences, which allows non-protein features such as centromere locations in Candida albicans and tRNA genes in all species to be included. The data set has been expanded to 13 species, including genomes of pathogens (C. albicans, C. parapsilosis, C. tropicalis, and C. orthopsilosis), and those of xylose-degrading species with important biotechnological applications (C. tenuis, Scheffersomyces stipitis, and Spathaspora passalidarum). Updated annotations of C. parapsilosis, C. dubliniensis, and Debaryomyces hansenii have been incorporated. We discovered more than 1,500 previously unannotated genes among the 13 genomes, ranging in size from 29 to 3,850 amino acids. Poorly conserved and rapidly evolving genes were also identified. Re-analysis of the mating type loci of the xylose degraders suggests that C. tenuis is heterothallic, whereas both Spa. passalidarum and S. stipitis are homothallic. As well as hosting the browser, the CGOB website (http://cgob.ucd.ie) gives direct access to all the underlying genome annotations, sequences, and curated orthology data.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Mating-type switching by chromosomal inversion in methylotrophic yeasts suggests an origin for the three-locus Saccharomyces cerevisiae system.

Sara J. Hanson; Kevin P. Byrne; Kenneth H. Wolfe

Significance Saccharomyces cerevisiae undergoes a programmed DNA rearrangement to switch between mating types a and alpha. The origins of this complex and multifaceted process, which requires three copies of the mating-type (MAT) locus (with two silenced), have remained unknown. In this study we present a mechanism for mating-type switching in methylotrophic yeasts that shares a common origin with the well-characterized system in S. cerevisiae but has simpler components. This system requires only two copies of the MAT locus, with one copy transcriptionally repressed by proximity to centromeric or telomeric chromatin. Switching between the mating types occurs by recombination between inverted-repeat sequences flanking the MAT loci. This system suggests an ancestral mechanism for mating-type switching in yeasts. Saccharomyces cerevisiae has a complex system for switching the mating type of haploid cells, requiring the genome to have three mating-type (MAT)–like loci and a mechanism for silencing two of them. How this system originated is unknown, because the three-locus system is present throughout the family Saccharomycetaceae, whereas species in the sister Candida clade have only one locus and do not switch. Here we show that yeasts in a third clade, the methylotrophs, have a simpler two-locus switching system based on reversible inversion of a section of chromosome with MATa genes at one end and MATalpha genes at the other end. In Hansenula polymorpha the 19-kb invertible region lies beside a centromere so that, depending on the orientation, either MATa or MATalpha is silenced by centromeric chromatin. In Pichia pastoris, the orientation of a 138-kb invertible region puts either MATa or MATalpha beside a telomere and represses transcription of MATa2 or MATalpha2. Both species are homothallic, and inversion of their MAT regions can be induced by crossing two strains of the same mating type. The three-locus system of S. cerevisiae, which uses a nonconservative mechanism to replace DNA at MAT, likely evolved from a conservative two-locus system that swapped genes between expression and nonexpression sites by inversion. The increasing complexity of the switching apparatus, with three loci, donor bias, and cell lineage tracking, can be explained by continuous selection to increase sporulation ability in young colonies. Our results provide an evolutionary context for the diversity of switching and silencing mechanisms.

Collaboration


Dive into the Kevin P. Byrne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Estelle Proux-Wéra

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara J. Hanson

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge