Kevin P. Herlihy
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kevin P. Herlihy.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Timothy J. Merkel; Stephen W. Jones; Kevin P. Herlihy; Farrell R. Kersey; Adam R. Shields; Mary E. Napier; J. Christopher Luft; Huali Wu; William C. Zamboni; Andrew Z. Wang; James E. Bear; Joseph M. DeSimone
It has long been hypothesized that elastic modulus governs the biodistribution and circulation times of particles and cells in blood; however, this notion has never been rigorously tested. We synthesized hydrogel microparticles with tunable elasticity in the physiological range, which resemble red blood cells in size and shape, and tested their behavior in vivo. Decreasing the modulus of these particles altered their biodistribution properties, allowing them to bypass several organs, such as the lung, that entrapped their more rigid counterparts, resulting in increasingly longer circulation times well past those of conventional microparticles. An 8-fold decrease in hydrogel modulus correlated to a greater than 30-fold increase in the elimination phase half-life for these particles. These results demonstrate a critical design parameter for hydrogel microparticles.
Nano Letters | 2012
Jillian L. Perry; Kevin G. Reuter; Marc P. Kai; Kevin P. Herlihy; Stephen W. Jones; J. Chris Luft; Mary E. Napier; James E. Bear; Joseph M. DeSimone
In this account, we varied PEGylation density on the surface of hydrogel PRINT nanoparticles and systematically observed the effects on protein adsorption, macrophage uptake, and circulation time. Interestingly, the density of PEGylation necessary to promote a long-circulating particle was dramatically less than what has been previously reported. Overall, our methodology provides a rapid screening technique to predict particle behavior in vivo and our results deliver further insight to what PEG density is necessary to facilitate long-circulation.
Langmuir | 2010
Timothy J. Merkel; Kevin P. Herlihy; Janine K. Nunes; Ryan Orgel; Jason P. Rolland; Joseph M. DeSimone
The search for a method to fabricate nonspherical colloidal particles from a variety of materials is of growing interest. As the commercialization of nanotechnology continues to expand, the ability to translate particle-fabrication methods from a laboratory to an industrial scale is of increasing significance. In this feature article, we examine several of the most readily scalable top-down methods for the fabrication of such shape-specific particles and compare their capabilities with respect to particle composition, size, shape, and complexity as well as the scalability of the method. We offer an extensive examination of particle replication in nonwetting templates (PRINT) with regard to the versatility and scalability of this technique. We also detail the specific methods used in PRINT particle fabrication, including harvesting, purification, and surface-modification techniques, with an examination of both past and current methods.
Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology | 2009
Dorian A. Canelas; Kevin P. Herlihy; Joseph M. DeSimone
This review discusses rational design of particles for use as therapeutic vectors and diagnostic imaging agent carriers. The emerging importance of both particle size and shape is considered, and the adaptation and modification of soft lithography methods to produce nanoparticles are highlighted. To this end, studies utilizing particles made via a process called Particle Replication In Non-wetting Templates are discussed. In addition, insights gained into therapeutic cargo and imaging agent delivery from related types of polymer-based carriers are considered.
Advanced Materials | 2013
Stephen W. Morton; Kevin P. Herlihy; Kevin E. Shopsowitz; Zhou J. Deng; Kevin S. Chu; Charles J. Bowerman; Joseph M. DeSimone; Paula T. Hammond
Scalable methods, PRINT particle fabrication, and spray-assisted Layer-by-Layer deposition are combined to generate uniform and functional nanotechnologies with precise control over composition, size, shape, and surface functionality. A modular and tunable approach towards design of built-to-order nanoparticle systems, spray coating on PRINT particles is demonstrated to achieve technologies capable of targeted interactions with cancer cells for applications in drug delivery.
Nano Letters | 2010
Janine K. Nunes; Kevin P. Herlihy; Lamar O. Mair; Richard Superfine; Joseph M. DeSimone
Interest in uniform multifunctional magnetic particles is driven by potential applications in biomedical and materials science. Here we demonstrate the fabrication of highly tailored nanoscale and microscale magneto-polymer composite particles using a template based approach. Regiospecific surface functionalization of the particles was performed by chemical grafting and evaporative Pt deposition. Manipulation of the particles by an applied magnetic field was demonstrated in water and hydrogen peroxide.
New Journal of Physics | 2009
Hanjun Zhang; Janine K. Nunes; Stephanie E. A. Gratton; Kevin P. Herlihy; P D Pohlhaus; Joseph M. DeSimone
Using Particle Replication In Nonwetting Templates (PRINT ® ) technology, multiphasic and regio-specifically functionalized shape-controlled particles have been fabricated that include end-labeled particles via post- functionalization; biphasic Janus particles that integrate two compositionally different chemistries into a single particle; and more complex multiphasic shape-specific particles. Controlling the anisotropic distribution of matter within a particle creates an extra parameter in the colloidal particle design, providing opportunities to generate advanced particles with versatile and tunable compositions, properties, and thus functionalities. Owing to their robust characteristics, these multiphasic and regio-specifically functionalized PRINT particles should be promising platforms for applications in life science and materials science.
Langmuir | 2008
Kevin P. Herlihy; Janine K. Nunes; Joseph M. DeSimone
Micrometer-sized monodisperse anisotropic polymer particles, with disk, rod, fenestrated hexagon (hexnut), and boomerang shapes, were synthesized using the particle replication in nonwetting templates (PRINT) process, and investigations were conducted on aqueous suspensions of these particles when subjected to alternating electric fields. A coplanar electrode configuration, with 1 to 2 mm electrode gaps (20-50 V ac, 0.5-5.0 kHz) was used, and the experiments were monitored with fluorescence microscopy. For all particle suspensions, the field brought about significant changes in the packing and orientation. Extensive particle chaining and packing were observed for the disk, rod, and hexnut suspensions. Because of the size and geometry of the boomerang particles, limited chaining was observed; however, the field triggered a change from random to a more ordered packing arrangement.
Proceedings of SPIE, the International Society for Optical Engineering | 2006
Kenton B. Wiles; Natasha S. Wiles; Kevin P. Herlihy; Benjamin W. Maynor; Jason P. Rolland; Joseph M. DeSimone
The fabrication of nanometer size structures and complex devices for microelectronics is of increasing importance so as to meet the challenges of large-scale commercial applications. Soft lithography typically employs elastomeric polydimethylsiloxane (PDMS) molds to replicate micro- and nanoscale features. However, the difficulties of PDMS for nanoscale fabrication include inherent incompatibility with organic liquids and the production of a residual scum or flash layer that link features where the nano-structures meet the substrate. An emerging technologically advanced technique known as Pattern Replication in Non-wetting Templates (PRINT) avoids both of these dilemmas by utilizing photocurable perfluorinated polyether (PFPE) rather than PDMS as the elastomeric molding material. PFPE is a liquid at room temperature that exhibits low modulus and high gas permeability when cured. The highly fluorinated PFPE material allows for resistance to swelling by organic liquids and very low surface energies, thereby preventing flash layer formation and ease of separation of PFPE molds from the substrates. These enhanced characteristics enable easy removal of the stamp from the molded material, thereby minimizing damage to the nanoscale features. Herein we describe that PRINT can be operated in two different modes depending on whether the objects to be molded are to be removed and harvested (i.e. to make shape specific organic particles) or whether scum free objects are desired which are adhered onto the substrate (i.e. for scum free pattern generation using imprint lithography). The former can be achieved using a non-reactive, low surface energy substrate (PRINT: Particle Replication in Non-wetting Templates) and the latter can be achieved using a reactive, low surface energy substrate (PRINT: Pattern Replication in Non-wetting Templates). We show that the PRINT technology can been used to fabricate nano-particle arrays covalently bound to a glass substrate with no scum layer. The nanometer size arrays were fabricated using a PFPE mold and a self-assembled monolayer (SAM) fluorinated glass substrate that was also functionalized with free-radically reactive SAM methacrylate moieties. The molded polymeric materials were covalently bound to the glass substrate through thermal curing with the methacrylate groups to permit three dimensional array fabrication. The low surface energies of the PFPE mold and fluorinated glass substrate allowed for no flash layer formation, permitting well resolved structures.
Methods of Molecular Biology | 2011
Ashley L. Galloway; Andrew Murphy; Jason P. Rolland; Kevin P. Herlihy; Robby A. Petros; Mary E. Napier; Joseph M. DeSimone
The PRINT(®) (pattern replication in non-wetting templates) process has been developed as a simple, gentle way to pattern films or generate discrete particles in arrays out of either pure biological materials or biomolecules encapsulated within polymeric materials. Patterned films and particle arrays can be fabricated in a wide array of sizes and shapes using Fluorocur(®) (a UV-curable perfluoropolyether polymer) from the nanometer to micron scale.