Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin P. Rosenblatt is active.

Publication


Featured researches published by Kevin P. Rosenblatt.


Journal of Biological Chemistry | 2006

Regulation of Fibroblast Growth Factor-23 Signaling by Klotho

Hiroshi Kurosu; Yasushi Ogawa; Masayoshi Miyoshi; Masaya Yamamoto; Animesh Nandi; Kevin P. Rosenblatt; Michel Baum; Susan C. Schiavi; Ming Chang Hu; Orson W. Moe; Makoto Kuro-o

The aging suppressor gene Klotho encodes a single-pass transmembrane protein. Klotho-deficient mice exhibit a variety of aging-like phenotypes, many of which are similar to those observed in fibroblast growth factor-23 (FGF23)-deficient mice. To test the possibility that Klotho and FGF23 may function in a common signal transduction pathway(s), we investigated whether Klotho is involved in FGF signaling. Here we show that Klotho protein directly binds to multiple FGF receptors (FGFRs). The Klotho-FGFR complex binds to FGF23 with higher affinity than FGFR or Klotho alone. In addition, Klotho significantly enhanced the ability of FGF23 to induce phosphorylation of FGF receptor substrate and ERK in various types of cells. Thus, Klotho functions as a cofactor essential for activation of FGF signaling by FGF23.


Journal of Biological Chemistry | 2007

Tissue-specific Expression of βKlotho and Fibroblast Growth Factor (FGF) Receptor Isoforms Determines Metabolic Activity of FGF19 and FGF21

Hiroshi Kurosu; Mihwa Choi; Yasushi Ogawa; Addie S. Dickson; Regina Goetz; Anna V. Eliseenkova; Moosa Mohammadi; Kevin P. Rosenblatt; Steven A. Kliewer; Makoto Kuro-o

The fibroblast growth factor (FGF) 19 subfamily of ligands, FGF19, FGF21, and FGF23, function as hormones that regulate bile acid, fatty acid, glucose, and phosphate metabolism in target organs through activating FGF receptors (FGFR1–4). We demonstrated that Klotho and βKlotho, homologous single-pass transmembrane proteins that bind to FGFRs, are required for metabolic activity of FGF23 and FGF21, respectively. Here we show that, like FGF21, FGF19 also requires βKlotho. Both FGF19 and FGF21 can signal through FGFR1–3 bound by βKlotho and increase glucose uptake in adipocytes expressing FGFR1. Additionally, both FGF19 and FGF21 bind to the βKlotho-FGFR4 complex; however, only FGF19 signals efficiently through FGFR4. Accordingly, FGF19, but not FGF21, activates FGF signaling in hepatocytes that primarily express FGFR4 and reduces transcription of CYP7A1 that encodes the rate-limiting enzyme for bile acid synthesis. We conclude that the expression of βKlotho, in combination with particular FGFR isoforms, determines the tissue-specific metabolic activities of FGF19 and FGF21.


Cancer Cell | 2003

Protein microarrays: Meeting analytical challenges for clinical applications

Lance A. Liotta; Virginia Espina; Arpita I. Mehta; Valerie S. Calvert; Kevin P. Rosenblatt; David Geho; Peter J. Munson; Lynn Young; Julia Wulfkuhle; Emanuel F. Petricoin

Protein microarrays, one emerging class of proteomic technologies, have broad applications for discovery and quantitative analysis. A rapidly expanding use of this technology is the acquisition of information about the posttranslational modifications of proteins reflecting the activity state of signal pathways and networks, and is now employed for the analysis of biopsy samples in clinical trial research.


Proceedings of the National Academy of Sciences of the United States of America | 2007

βKlotho is required for metabolic activity of fibroblast growth factor 21

Yasushi Ogawa; Hiroshi Kurosu; Masaya Yamamoto; Animesh Nandi; Kevin P. Rosenblatt; Regina Goetz; Anna V. Eliseenkova; Moosa Mohammadi; Makoto Kuro-o

Fibroblast growth factor 21 (FGF21) is a liver-derived endocrine factor that stimulates glucose uptake in adipocytes. Here, we show that FGF21 activity depends on βKlotho, a single-pass transmembrane protein whose expression is induced during differentiation from preadipocytes to adipocytes. βKlotho physically interacts with FGF receptors 1c and 4, thereby increasing the ability of these FGF receptors to bind FGF21 and activate the MAP kinase cascade. Knockdown of βKlotho expression by siRNA in adipocytes diminishes glucose uptake induced by FGF21. Importantly, administration of FGF21 into mice induces MAP kinase phosphorylation in white adipose tissue and not in tissues without βKlotho expression. Thus, βKlotho functions as a cofactor essential for FGF21 activity.


The FASEB Journal | 2010

Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule.

Ming Chang Hu; Mingjun Shi; Jianning Zhang; Johanne Pastor; Teruyo Nakatani; Beate Lanske; M. Shawkat Razzaque; Kevin P. Rosenblatt; Michel Baum; Makoto Kuro-o; Orson W. Moe

Klotho has profound effects on phosphate metabolism, but the mechanisms of how Klotho affects phosphate homeostasis is unknown. We detected Klotho in the proximal tubule cell, brush border, and urinary lumen, where phosphate homeostasis resides. Increasing Klotho in the kidney and urine chronically by transgenic overexpression or acutely by intravenous infusion caused hypophosphatemia, phosphaturia from decreased proximal phosphate reabsorption, and decreased activity and protein of the principal renal phosphate transporter NaPi‐2a. The phosphaturic effect was present in FGF23‐null mice, indicating a direct action distinct from Klothos known role as a coreceptor for FGF23. Direct inhibition of NaPi‐2a by Klotho was confirmed in cultured cells and in cell‐free membrane vesicles characterized by acute inhibition of transport activity followed by decreased cell surface protein. Transport inhibition can be mimicked by recombinant β‐glucuronidase and is associated with proteolytic degradation and reduced surface NaPi‐2a. The inhibitory effect of Klotho on NaPi‐2a was blocked by β‐glucuronidase inhibitor but not by protease inhibitor. Klotho is a novel phosphaturic substance that acts as an enzyme in the proximal tubule urinary lumen by modifying glycans, which cause decreased transporter activity, followed by proteolytic degradation and possibly internalization of NaPi‐2a from the apical membrane.—Hu, M. C., Shi, M., Zhang, J., Pastor, J., Nakatani, T., Lanske, B., Shawkat Razzaque, M., Rosenblatt, K. P., Baum, M. G., Kuro‐o, M., Moe, O. W. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 24, 3438–3450 (2010). www.fasebj.org


Journal of Biological Chemistry | 2005

Regulation of Oxidative Stress by the Anti-aging Hormone Klotho

Masaya Yamamoto; Jeremy D. Clark; Johanne Pastor; Prem Gurnani; Animesh Nandi; Hiroshi Kurosu; Masayoshi Miyoshi; Yasushi Ogawa; Diego H. Castrillon; Kevin P. Rosenblatt; Makoto Kuro-o

klotho is an aging suppressor gene and extends life span when overexpressed in mice. Klotho protein was recently demonstrated to function as a hormone that inhibits insulin/insulin-like growth factor-1 (IGF-1) signaling. Here we show that Klotho protein increases resistance to oxidative stress at the cellular and organismal level in mammals. Klotho protein activates the FoxO forkhead transcription factors that are negatively regulated by insulin/IGF-1 signaling, thereby inducing expression of manganese superoxide dismutase. This in turn facilitates removal of reactive oxygen species and confers oxidative stress resistance. Thus, Klotho-induced inhibition of insulin/IGF-1 signaling is associated with increased resistance to oxidative stress, which potentially contributes to the anti-aging properties of klotho.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1

Seung Kuy Cha; Bernardo Ortega; Hiroshi Kurosu; Kevin P. Rosenblatt; Makoto Kuro-o; Chou Long Huang

Klotho is a mammalian senescence-suppression protein that has homology with glycosidases. The extracellular domain of Klotho is secreted into urine and blood and may function as a humoral factor. Klotho-deficient mice have accelerated aging and imbalance of ion homeostasis. Klotho treatment increases cell-surface abundance of the renal epithelial Ca2+ channel TRPV5 by modifying its N-linked glycans. However, the precise sugar substrate and mechanism for regulation by Klotho is not known. Here, we report that the extracellular domain of Klotho activates plasma-membrane resident TRPV5 through removing terminal sialic acids from their glycan chains. Removal of sialic acids exposes underlying disaccharide galactose-N-acetylglucosamine, a ligand for a ubiquitous galactoside-binding lectin galectin-1. Binding to galectin-1 lattice at the extracellular surface leads to accumulation of functional TRPV5 on the plasma membrane. Knockdown of β-galactoside α2,6-sialyltransferase (ST6Gal-1) by RNA interference, but not other sialyltransferases, in a human cell line prevents the regulation by Klotho. Moreover, the regulation by Klotho is absent in a hamster cell line that lacks endogenous ST6Gal-1, but is restored by forced expression of recombinant ST6Gal-1. Thus, Klotho participates in specific removal of α2,6-linked sialic acids and regulates cell surface retention of TRPV5 through this activity. This action of Klotho represents a novel mechanism for regulation of the activity of cell-surface glycoproteins and likely contributes to maintenance of calcium balance by Klotho.


Diabetes | 2011

Klotho Depletion Contributes to Increased Inflammation in Kidney of the db/db Mouse Model of Diabetes Via RelA (Serine)536 Phosphorylation

Yanhua Zhao; Srijita Banerjee; Nilay Dey; Wanda S. LeJeune; Partha S. Sarkar; Reynolds Brobey; Kevin P. Rosenblatt; Ronald G. Tilton; Sanjeev Choudhary

OBJECTIVE Klotho is an antiaging hormone present in the kidney that extends the lifespan, regulates kidney function, and modulates cellular responses to oxidative stress. We investigated whether Klotho levels and signaling modulate inflammation in diabetic kidneys. RESEARCH DESIGN AND METHODS Renal Klotho expression was determined by quantitative real-time PCR and immunoblot analysis. Primary mouse tubular epithelial cells were treated with methylglyoxalated albumin, and Klotho expression and inflammatory cytokines were measured. Nuclear factor (NF)-κB activation was assessed by treating human embryonic kidney (HEK) 293 and HK-2 cells with tumor necrosis factor (TNF)-α in the presence or absence of Klotho, followed by immunoblot analysis to evaluate inhibitor of κB (IκB)α degradation, IκB kinase (IKK) and p38 activation, RelA nuclear translocation, and phosphorylation. A chromatin immunoprecipitation assay was performed to analyze the effects of Klotho signaling on interleukin-8 and monocyte chemoattractant protein-1 promoter recruitment of RelA and RelA serine (Ser)536. RESULTS Renal Klotho mRNA and protein were significantly decreased in db/db mice, and a similar decline was observed in the primary cultures of mouse tubule epithelial cells treated with methylglyoxal-modified albumin. The exogenous addition of soluble Klotho or overexpression of membranous Klotho in tissue culture suppressed NF-κB activation and subsequent production of inflammatory cytokines in response to TNF-α stimulation. Klotho specifically inhibited RelA Ser536 phosphorylation as well as promoter DNA binding of this phosphorylated form of RelA without affecting IKK-mediated IκBα degradation, total RelA nuclear translocation, and total RelA DNA binding. CONCLUSIONS These findings suggest that Klotho serves as an anti-inflammatory modulator, negatively regulating the production of NF-κB–linked inflammatory proteins via a mechanism that involves phosphorylation of Ser536 in the transactivation domain of RelA.


Oncogene | 2011

Vimentin is a novel AKT1 target mediating motility and invasion

Quansheng Zhu; Kevin P. Rosenblatt; Kai Lieh Huang; Guy Lahat; Reynolds Brobey; Svetlana Bolshakov; Theresa Nguyen; Zhiyong Ding; Roman Belousov; Katelynn Bill; Alexander J. Lazar; Adam P. Dicker; Gordon B. Mills; Mien Chie Hung; Dina Lev

The PI3K/AKT signaling pathway is aberrant in a wide variety of cancers. Downstream effectors of AKT are involved in survival, growth and metabolic-related pathways. In contrast, contradictory data relating to AKT effects on cell motility and invasion, crucial prometastatic processes, have been reported pointing to a potential cell type and isoform type-specific AKT-driven function. By implication, study of AKT signaling should optimally be conducted in an appropriate intracellular environment. Prognosis in soft-tissue sarcoma (STS), the aggressive malignancies of mesenchymal origin, is poor, reflecting our modest ability to control metastasis, an effort hampered by lack of insight into molecular mechanisms driving STS progression and dissemination. We examined the impact of the cancer progression-relevant AKT pathway on the mesenchymal tumor cell internal milieu. We demonstrate that AKT1 activation induces STS cell motility and invasiveness at least partially through a novel interaction with the intermediate filament vimentin (Vim). The binding of AKT (tail region) to Vim (head region) results in Vim Ser39 phosphorylation enhancing the ability of Vim to induce motility and invasion while protecting Vim from caspase-induced proteolysis. Moreover, vimentin phosphorylation was shown to enhance tumor and metastasis growth in vivo. Insights into this mesenchymal-related molecular mechanism may facilitate the development of critically lacking therapeutic options for these devastating malignancies.


Journal of Clinical Investigation | 2013

Spironolactone ameliorates PIT1-dependent vascular osteoinduction in klotho-hypomorphic mice

Jakob Voelkl; Ioana Alesutan; Christina Leibrock; Leticia Quintanilla-Martinez; Volker Kuhn; Martina Feger; Sobuj Mia; Mohamed Siyabeldin E. Ahmed; Kevin P. Rosenblatt; Makoto Kuro-o; Florian Lang

Klotho is a potent regulator of 1,25-hydroxyvitamin D3 [1,25(OH)2D3] formation and calcium-phosphate metabolism. Klotho-hypomorphic mice (kl/kl mice) suffer from severe growth deficits, rapid aging, hyperphosphatemia, hyperaldosteronism, and extensive vascular and soft tissue calcification. Sequelae of klotho deficiency are similar to those of end-stage renal disease. We show here that the mineralocorticoid receptor antagonist spironolactone reduced vascular and soft tissue calcification and increased the life span of kl/kl mice, without significant effects on 1,25(OH)2D3, FGF23, calcium, and phosphate plasma concentrations. Spironolactone also reduced the expression of osteoinductive Pit1 and Tnfa mRNA, osteogenic transcription factors, and alkaline phosphatase (Alpl) in calcified tissues of kl/kl mice. In human aortic smooth muscle cells (HAoSMCs), aldosterone dose-dependently increased PIT1 mRNA expression, an effect paralleled by increased expression of osteogenic transcription factors and enhanced ALP activity. The effects of aldosterone were reversed by both spironolactone treatment and PIT1 silencing and were mitigated by FGF23 cotreatment in HAoSMCs. In conclusion, aldosterone contributes to vascular and soft tissue calcification, an effect due, at least in part, to stimulation of spironolactone-sensitive, PIT1-dependent osteoinductive signaling.

Collaboration


Dive into the Kevin P. Rosenblatt's collaboration.

Top Co-Authors

Avatar

Prem Gurnani

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Makoto Kuro-o

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Animesh Nandi

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Reynolds Brobey

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Harold R. Garner

Virginia Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Jean Gao

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jung Hun Oh

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Johanne Pastor

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Li

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge