Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin R. Covey is active.

Publication


Featured researches published by Kevin R. Covey.


Annual Review of Astronomy and Astrophysics | 2010

A Universal Stellar Initial Mass Function? A Critical Look at Variations

N. Bastian; Kevin R. Covey; Michael R. Meyer

Whether the stellar initial mass function (IMF) is universal or is instead sensitive to environmental conditions is of critical importance: The IMF influences most observable properties of stellar populations and thus galaxies, and detecting variations in the IMF could provide deep insights into the star formation process. This review critically examines reports of IMF variations, with a view toward whether other explanations are sufficient given the evidence. Studies of the field, young clusters and associations, and old globular clusters suggest that the vast majority were drawn from a universal system IMF: a power law of Salpeter index (Γ = 1.35) above a few solar masses, and a log normal or shallower power law (Γ ∼ 0–0.25) for lower mass stars. The shape and universality of the substellar IMF is still under investigation. Observations of resolved stellar populations and the integrated properties of most galaxies are also consistent with a universal IMF, suggesting no gross variations over much of cosm...


The Astrophysical Journal | 2008

The Milky Way Tomography with SDSS. II. Stellar Metallicity

Željko Ivezić; Branimir Sesar; Mario Juric; Nicholas A. Bond; Julianne J. Dalcanton; Constance M. Rockosi; Brian Yanny; Heidi Jo Newberg; Timothy C. Beers; Carlos Allende Prieto; Ron Wilhelm; Young Sun Lee; Thirupathi Sivarani; John E. Norris; Coryn A. L. Bailer-Jones; Paola Re Fiorentin; David J. Schlegel; Alan Uomoto; Robert H. Lupton; Gillian R. Knapp; James E. Gunn; Kevin R. Covey; Gajus A. Miknaitis; Mamoru Doi; M. Tanaka; Masataka Fukugita; Steve Kent; Douglas P. Finkbeiner; Jeffrey A. Munn; Jeffrey R. Pier

In addition to optical photometry of unprecedented quality, the Sloan Digital Sky Survey (SDSS) is producing a massive spectroscopic database which already contains over 280,000 stellar spectra. Using eectiv e temperature and metallicity derived from SDSS spectra for 60,000 F and G type main sequence stars (0:2 < g r < 0:6), we develop polynomial models, reminiscent of traditional methods based on the UBV photometry, for estimating these parameters from the SDSS u g and g r colors. These estimators reproduce SDSS spectroscopic parameters with a root-mean-square scatter of 100 K for eectiv e temperature, and 0.2 dex for metallicity (limited by photometric errors), which are similar to random and systematic uncertainties in spectroscopic determinations. We apply this method to a photometric catalog of coadded SDSS observations and study the photometric metallicity distribution of 200,000 F and G type stars observed in 300 deg 2 of high Galactic latitude sky. These deeper (g < 20:5) and photometrically precise ( 0.01 mag) coadded data enable an accurate measurement of the unbiased metallicity distribution for a complete volume-limited sample of stars at distances between 500 pc and 8 kpc. The metallicity distribution can be exquisitely modeled using two components with a spatially varying number ratio, that correspond to disk and halo. The best-t number ratio of the two components is consistent with that implied by the decomposition of stellar counts proles into exponential disk and power-law halo components by Juri c et al. (2008). The two components also possess the kinematics expected for disk and halo stars. The metallicity of the halo component can be modeled as a spatially invariant Gaussian distribution with a mean of [F e=H] = 1:46 and a standard deviation of 0.3 dex. The disk metallicity distribution is non-Gaussian, with a remarkably small scatter (rms 0.16 dex) and the median smoothly decreasing with distance from the plane from 0:6 at 500 pc to 0:8 beyond several kpc. Similarly, we nd using proper motion measurements that a nonGaussian rotational velocity distribution of disk stars shifts by 50 km/s as the distance from the plane increases from 500 pc to several kpc. Despite this similarity, the metallicity and rotational velocity distributions of disk stars are not correlated (Kendall’s = 0:017 0:018). This absence of a correlation between metallicity and kinematics for disk stars is in a conict with the traditional decomposition in terms of thin and thick disks, which predicts a strong correlation ( = 0:30 0:04) at 1 kpc from the mid-plane. Instead, the variation of the metallicity and rotational velocity distributions can be modeled using non-Gaussian functions that retain their shapes and only shift as the distance from the mid-plane increases. We also study the metallicity distribution using a shallower (g < 19:5) but much larger sample of close to three million stars in 8500 sq. deg. of sky included in SDSS Data Release 6. The large sky coverage enables the detection of coherent substructures in the kinematics{ metallicity space, such as the Monoceros stream, which rotates faster than the LSR, and has a median metallicity of [F e=H] = 0:95, with an rms scatter of only 0.15 dex. We extrapolate our results to the performance expected from the Large Synoptic Survey Telescope (LSST) and estimate that LSST will obtain metallicity measurements accurate to 0.2 dex or better, with proper motion measurements accurate to 0.2-0.5 mas/yr, for about 200 million F/G dwarf stars within a distance limit of 100 kpc (g < 23:5). Subject headings: methods: data analysis | stars: statistics | Galaxy: halo, kinematics and dynamics, stellar content, structure


The Astronomical Journal | 2008

Constraining the Age-Activity Relation for Cool Stars: The Sloan Digital Sky Survey Data Release 5 Low-Mass Star Spectroscopic Sample

Andrew A. West; Suzanne L. Hawley; John J. Bochanski; Kevin R. Covey; I. Neill Reid; Saurav Dhital; Eric J. Hilton; Michael Masuda

We present a spectroscopic analysis of over 38,000 low-mass stars from the Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5). Analysis of this unprecedentedly large sample confirms the previously detected decrease in the fraction of magnetically active stars (as traced by Hα emission) as a function of the vertical distance from the Galactic plane. The magnitude and slope of this effect vary as a function of spectral type. Using simple 1D dynamical models, we demonstrate that the drop in activity fraction can be explained by thin-disk dynamical heating and a rapid decrease in magnetic activity. The timescale for this rapid activity decrease changes according to the spectral type. By comparing our data to the simulations, we calibrate the age-activity relation at each M dwarf spectral type. We also present evidence for a possible decrease in the metallicity as a function of height above the Galactic plane. In addition to our activity analysis, we provide line measurements, molecular band indices, colors, radial velocities, 3D space motions, and mean properties as a function of spectral type for the SDSS DR5 low-mass star sample.


The Astronomical Journal | 2008

THE SEGUE STELLAR PARAMETER PIPELINE. I. DESCRIPTION AND COMPARISON OF INDIVIDUAL METHODS

Young Sun Lee; Timothy C. Beers; Thirupathi Sivarani; Carlos Allende Prieto; Lars Koesterke; Ronald Wilhelm; Paola Re Fiorentin; Coryn A. L. Bailer-Jones; John E. Norris; Constance M. Rockosi; Brian Yanny; Heidi Jo Newberg; Kevin R. Covey; Haotong Zhang; A.-Li Luo

We describe the development and implementation of the Sloan Extension for Galactic Exploration and Understanding (SEGUE) Stellar Parameter Pipeline (SSPP). The SSPP is derived, using multiple techniques, radial velocities, and the fundamental stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) for AFGK-type stars, based on medium-resolution spectroscopy and ugriz photometry obtained during the course of the original Sloan Digital Sky Survey (SDSS-I) and its Galactic extension (SDSS-II/SEGUE). The SSPP also provides spectral classification for a much wider range of stars, including stars with temperatures outside the window where atmospheric parameters can be estimated with the current approaches. This is Paper I in a series of papers on the SSPP; it provides an overview of the SSPP, and tests of its performance using several external data sets. Random and systematic errors are critically examined for the current version of the SSPP, which has been used for the sixth public data release of the SDSS (DR-6).


The Astronomical Journal | 2002

Characterization of M,L and T dwarfs in the Sloan Digital Sky Survey

Suzanne L. Hawley; Kevin R. Covey; Gillian R. Knapp; David A. Golimowski; Xiaohui Fan; Scott F. Anderson; James E. Gunn; Hugh C. Harris; Željko Ivezić; Gary M. Long; Robert H. Lupton; P. McGehee; Vijay K. Narayanan; Eric W. Peng; David J. Schlegel; Donald P. Schneider; Emily Y. Spahn; Michael A. Strauss; Paula Szkody; Zlatan I. Tsvetanov; Lucianne M. Walkowicz; J. Brinkmann; Michael Harvanek; Gregory S. Hennessy; S. J. Kleinman; Jurek Krzesinski; Dan Long; Eric H. Neilsen; Peter R. Newman; Atsuko Nitta

An extensive sample of M, L, and T dwarfs identified in the Sloan Digital Sky Survey (SDSS) has been compiled. The sample of 718 dwarfs includes 677 new objects (629 M dwarfs and 48 L dwarfs), together with 41 that have been previously published. All new objects and some of the previously published ones have new optical spectra obtained either with the SDSS spectrographs or with the Apache Point Observatory 3.5 m ARC telescope. Spectral types and SDSS colors are available for all objects; approximately 35% also have near-infrared magnitudes measured by 2MASS (Two Micron All Sky Survey) or on the Mauna Kea system. We use this sample to characterize the color–spectral type and color-color relations of late-type dwarfs in the SDSS filters and to derive spectroscopic and photometric parallax relations for use in future studies of the luminosity and mass functions based on SDSS data. We find that the i* - z* and i* - J colors provide good spectral type and absolute magnitude (Mi*) estimates for M and L dwarfs. Our distance estimates for the current sample indicate that SDSS is finding early M dwarfs out to ~1.5 kpc, L dwarfs to ~100 pc, and T dwarfs to ~20 pc. The T dwarf photometric data show large scatter and are therefore less reliable for spectral type and distance estimation.


The Astronomical Journal | 2007

Stellar SEDs from 0.3 to 2.5 μm: Tracing the Stellar Locus and Searching for Color Outliers in the SDSS and 2MASS

Kevin R. Covey; Ž. Ivezić; David J. Schlegel; Douglas P. Finkbeiner; Nikhil Padmanabhan; Robert H. Lupton; Marcel A. Agüeros; John J. Bochanski; Suzanne L. Hawley; Andrew A. West; Anil C. Seth; Amy E. Kimball; Stephanie M. Gogarten; Mark W. Claire; Daryl Haggard; Nathan A. Kaib; D. P. Schneider; Branimir Sesar

The Sloan Digital Sky Survey (SDSS) and Two Micron All Sky Survey (2MASS) are rich resources for studying stellar astrophysics and the structure and formation history of the Galaxy. As new surveys and instruments adopt similar filter sets, it is increasingly important to understand the properties of the ugrizJHKs stellar locus, both to inform studies of ‘normal’ main sequence stars as well as for robust searches for point sources with unusual colors. Using a sample of � 600,000 point sources detected by SDSS and 2MASS, we tabulate the position and width of the ugrizJHKs stellar locus as a function of g i color, and provide accurate polynomial fits. We map the Morgan-Keenan spectral type sequence to the median stellar locus by using synthetic photometry of spectral standards and by analyzing 3000 SDSS stellar spectra with a custom spectral typing pipeline, described in full in an attached Appendix. Having characterized the properties of ‘normal’ main sequence stars, we develop an algorithm for identifying point sources whose colors differ significantly from those of normal stars. This algorithm calculates a point source’s minimum separation from the stellar locus in a seven-dimensional color space, and robustly identifies objects with unusual colors, as well as spurious SDSS/2MASS matches. Analysis of a final catalog of 2117 color outliers identifies 370 white-dwarf/M dwarf (WDMD) pairs, 93 QSOs, and 90 M giant/carbon star candidates, and demonstrates that WDMD pairs and QSOs can be distinguished on the basis of their J Ks and r z colors. We also identify a group of objects with correlated offsets in the u g vs. g r and g r vs. r i color-color spaces, but subsequent follow-up is required to reveal the nature of these objects. Future applications of this algorithm to a matched SDSS-UKIDSS catalog may well identify additional classes of objects with unusual colors by probing new areas of color-magnitude space. Subject headings: surveys — stars:late-type — stars:early-type — Galaxy:stellar content — infrared:stars


The Astrophysical Journal | 2012

Metallicity and Temperature Indicators in M Dwarf K-band Spectra: Testing New and Updated Calibrations with Observations of 133 Solar Neighborhood M Dwarfs

Bárbara Rojas-Ayala; Kevin R. Covey; Philip S. Muirhead; James P. Lloyd

We present K-band spectra for 133 nearby (d < 33 ps) M dwarfs, including 18 M dwarfs with reliable metallicity estimates (as inferred from an FGK type companion), 11 M dwarf planet hosts, more than 2/3 of the M dwarfs in the northern 8 pc sample, and several M dwarfs from the LSPM catalog. From these spectra, we measure equivalent widths of the Ca and Na lines, and a spectral index quantifying the absorption due to H_2O opacity (the H_2O-K_2 index). Using empirical spectral type standards and synthetic models, we calibrate the H_2O-K_2 index as an indicator of an M dwarfs spectral type and effective temperature. We also present a revised relationship that estimates the [Fe/H] and [M/H] metallicities of M dwarfs from their Na I, Ca I, and H_2O-K_2 measurements. Comparisons to model atmosphere provide a qualitative validation of our approach, but also reveal an overall offset between the atomic line strengths predicted by models as compared to actual observations. Our metallicity estimates also reproduce expected correlations with Galactic space motions and Hα emission line strengths, and return statistically identical metallicities for M dwarfs within a common multiple system. Finally, we find systematic residuals between our H_2O-based spectral types and those derived from optical spectral features with previously known sensitivity to stellar metallicity, such as TiO, and identify the CaH1 index as a promising optical index for diagnosing the metallicities of near-solar M dwarfs.


The Astronomical Journal | 2007

Meeting the Cool Neighbors. IX. The Luminosity Function of M7-L8 Ultracool Dwarfs in the Field

Kelle L. Cruz; I. Neill Reid; J. Davy Kirkpatrick; Adam J. Burgasser; James Liebert; Adam Solomon; Sarah J. Schmidt; Peter R. Allen; Suzanne L. Hawley; Kevin R. Covey

We present a 20 pc, volume-limited sample of M7YL8 dwarfs created through spectroscopic follow-up of sources selected from the Two Micron All Sky Survey Second Incremental Release Point Source Catalog. In this paper we present optical spectroscopy of 198 candidate nearby ultracool dwarfs, including 12 late-M and L dwarfs likely to be within 20 pc of the Sun and 94 more distant late-type dwarfs. We have also identifiedfive ultracool dwarfs withspectral signatures of low gravity. Combining these data with previous results, we definea sample of 99ultracool dwarfs in 91 systems within 20 pc. These are used to estimate the J- and K-band luminosity functions for dwarfs with optical spectral types between M7 and L8 (10:5 < MJ < 15, 9:5 < MKS < 13). We find a space density of 4:9 ;10 � 3 pc � 3 for late-M dwarfs (M7YM9.5) and a lower limit of 3:8 ;10 � 3 pc � 3 for L dwarfs.


The Astronomical Journal | 2004

Spectroscopic Properties of Cool Stars in the Sloan Digital Sky Survey: An Analysis of Magnetic Activity and a Search for Subdwarfs

Andrew A. West; Suzanne L. Hawley; Lucianne M. Walkowicz; Kevin R. Covey; Nicole M. Silvestri; Sean N. Raymond; Hugh C. Harris; Jeffrey A. Munn; P. McGehee; Željko Ivezić; J. Brinkmann

We present a spectroscopic analysis of nearly 8000 late-type dwarfs in the Sloan Digital Sky Survey. Using the Hα emission line as an activity indicator, we investigate the fraction of active stars as a function of spectral type and find a peak near type M8, confirming previous results. In contrast to past findings, we find that not all M7–M8 stars are active. We show that this may be a selection effect of the distance distributions of previous samples, since the active stars appear to be concentrated near the Galactic plane. We also examine the activity strength (ratio of the luminosity emitted in Hα to the bolometric luminosity) for each star and find that the mean activity strength is constant over the range M0–M5 and declines at later types. The decline begins at a slightly earlier spectral type than previously found. We explore the effect that activity has on the broadband photometric colors and find no significant differences between active and inactive stars. We also carry out a search for subdwarfs using spectroscopic metallicity indicators and find 60 subdwarf candidates. Several of these candidates are near the extreme subdwarf boundary. The spectroscopic subdwarf candidates are redder by ~0.2 mag in g-r compared with disk dwarfs at the same r-i color.


The Astrophysical Journal | 2012

Characterizing the Cool KOIs. III. KOI-961: A Small Star with Large Proper Motion and Three Small Planets

Philip S. Muirhead; John Asher Johnson; Kevin Apps; Joshua A. Carter; Timothy D. Morton; Daniel C. Fabrycky; John Sebastian Pineda; Michael Bottom; Bárbara Rojas-Ayala; Everett Schlawin; Katherine Hamren; Kevin R. Covey; Justin R. Crepp; Keivan G. Stassun; Joshua Pepper; L. Hebb; Evan N. Kirby; Andrew W. Howard; Howard Isaacson; Geoffrey W. Marcy; David Levitan; T. Díaz-Santos; Lee Armus; James P. Lloyd

We present the characterization of the star KOI 961, an M dwarf with transit signals indicative of three short-period exoplanets, originally discovered by the Kepler Mission. We proceed by comparing KOI 961 to Barnards Star, a nearby, well-characterized mid-M dwarf. By comparing colors, optical and near-infrared spectra, we find remarkable agreement between the two, implying similar effective temperatures and metallicities. Both are metal-poor compared to the Solar neighborhood, have low projected rotational velocity, high absolute radial velocity, large proper motion and no quiescent H-alpha emission--all of which is consistent with being old M dwarfs. We combine empirical measurements of Barnards Star and expectations from evolutionary isochrones to estimate KOI 961s mass (0.13 ± 0.05 M_⊙), radius (0.17 ± 0.04 R_⊙) and luminosity (2.40 x 10^(-3.0 ± 0.3) L_⊙). We calculate KOI 961s distance (38.7 ± 6.3 pc) and space motions, which, like Barnards Star, are consistent with a high scale-height population in the Milky Way. We perform an independent multi-transit fit to the public Kepler light curve and significantly revise the transit parameters for the three planets. We calculate the false-positive probability for each planet-candidate, and find a less than 1% chance that any one of the transiting signals is due to a background or hierarchical eclipsing binary, validating the planetary nature of the transits. The best-fitting radii for all three planets are less than 1 Re_⊕, with KOI 961.03 being Mars-sized (Rp = 0.57 ± 0.18 R_⊕), and they represent some of the smallest exoplanets detected to date.

Collaboration


Dive into the Kevin R. Covey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew A. West

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luisa Marie Rebull

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Peter Plavchan

Missouri State University

View shared research outputs
Top Co-Authors

Avatar

Robert Allen Gutermuth

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lynne A. Hillenbrand

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge