Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin R. Crooks is active.

Publication


Featured researches published by Kevin R. Crooks.


Nature | 1999

Mesopredator release and avifaunal extinctions in a fragmented system

Kevin R. Crooks; Michael Soulé

Mammalian carnivores are particularly vulnerable to extinction in fragmented landscapes, and their disappearance may lead to increased numbers of smaller carnivores that are principle predators of birds and other small vertebrates. Such ‘mesopredator release’ has been implicated in the decline and extinction of prey species. Because experimental manipulation of carnivores is logistically, financially and ethically problematic,, however, few studies have evaluated how trophic cascades generated by the decline of dominant predators combine with other fragmentation effects to influence species diversity in terrestrial systems. Although the mesopredator release hypothesis has received only limited critical evaluation and remains controversial, it has become the basis for conservation programmes justifying the protection of carnivores. Here we describe a study that exploits spatial and temporal variation in the distribution and abundance of an apex predator, the coyote, in a landscape fragmented by development. It appears that the decline and disappearance of the coyote, in conjunction with the effects of habitat fragmentation, affect the distribution and abundance of smaller carnivores and the persistence of their avian prey.


Trends in Ecology and Evolution | 2010

The costs of chronic noise exposure for terrestrial organisms

Jesse R. Barber; Kevin R. Crooks; Kurt M. Fristrup

Growth in transportation networks, resource extraction, motorized recreation and urban development is responsible for chronic noise exposure in most terrestrial areas, including remote wilderness sites. Increased noise levels reduce the distance and area over which acoustic signals can be perceived by animals. Here, we review a broad range of findings that indicate the potential severity of this threat to diverse taxa, and recent studies that document substantial changes in foraging and anti-predator behavior, reproductive success, density and community structure in response to noise. Effective management of protected areas must include noise assessment, and research is needed to further quantify the ecological consequences of chronic noise exposure in terrestrial environments.


Ecological Applications | 2000

ARTHROPODS IN URBAN HABITAT FRAGMENTS IN SOUTHERN CALIFORNIA: AREA, AGE, AND EDGE EFFECTS

Douglas T. Bolger; Andrew V. Suarez; Kevin R. Crooks; Scott A. Morrison; Ted J. Case

The distribution of non-ant arthropods was examined in 40 urban habitat fragments in coastal San Diego County, California, USA, to look for effects of fragmen- tation, proximity to developed edge, and the non-native Argentine ant (Linepithema humile). Arthropods were sampled with pitfall traps and by vacuum sampling from California buck- wheat shrubs (Eriogonumfasciculatum). Individual arthropods were identified to order and Recognizable Taxonomic Unit (RTU), or morphospecies. At the fragment scale we looked for correlations in the point diversity and abundance of arthropods as a function of the age and area of the fragment being sampled. At the scale of the individual sample points we looked for correlations of abundance and diversity with variables that describe the species composition of the shrub vegetation and disturbance. As indicators of disturbance we used the cover of native woody and exotic non-woody vegetation, the distance to the nearest developed edge, and the abundance of Argentine ants. The following patterns were found: (1) In general, arthropods showed a fragmentation effect with point diversity and abundance positively correlated with fragment area and negatively correlated with fragment age. (2) The pitfall samples were dominated by three primarily non-native orders, Isopoda (pillbugs), Dermaptera (earwigs), and Blattaria (roaches). Over 35% of all pitfall-captured arthropods belonged to four species in these orders. Dermaptera and Blattaria increased in abundance in smaller and older fragments, respectively. Isopod abundance, in contrast, was unrelated to fragment attributes. None of these groups appeared to be associated with edges, but were distributed throughout the fragments. (3) Point diversity and abundance in ground-active spiders appears to be enhanced by fragmentation. (4) Total pitfall RTU richness and abun- dance, and abundance or richness in the Coleoptera (vacuum), Diptera, non-ant Hymenop- tera, Hemiptera, Microcoryphia, and Acarina had significant partial negative correlations with Argentine ant abundance. The Diptera and Coleoptera had this negative partial rela- tionship with the Argentine ants despite the fact that both they and the ants were positively associated with edges. (5) In general, diversity in most orders was higher in sampling locations dominated by coastal sage scrub habitat than in those with appreciable cover of chaparral shrub species. (6) There was a strong seasonal variation in abundance and diversity in most orders. Diversity and abundance were highest in spring, intermediate in winter, and lowest in the fall. (7) Although higher trophic levels are often considered to be more sensitive to fragmentation, two groups of arthropod predators, spiders and carabid beetles, increased in abundance in older fragments. Abundance of these predators was positively correlated with the abundance of Argentine ants and the non-native Isopods, Dermaptera, and Blattaria.


Biological Conservation | 2004

Avian assemblages along a gradient of urbanization in a highly fragmented landscape

Kevin R. Crooks; Andrew V. Suarez; Douglas T. Bolger

Abstract Our goal was to evaluate how avian assemblages varied along a gradient of urbanization in the highly fragmented landscape of coastal southern California. We measured species richness and abundance of birds within continuous blocks of habitat, within urban habitat fragments that varied in landscape and local habitat variables, and within the urban matrix at different distances from the wildland interface. These comparisons allowed us to characterize patterns of avifaunal response to a gradient of urban fragmentation. At the fragment scale, we found that fragment area was a strong, positive predictor of the total number of breeding species detected per fragment; total bird abundance per point count also increased with fragment size. Tree cover was higher in small fragments, as was the abundance of birds that typically occupy wooded habitats. Comparisons between core, fragment, and urban transects revealed differing patterns of response of individual bird species to urbanization. In unfragmented habitat, we recorded a relatively high diversity of urbanization-sensitive birds. In urban transects, these species were rare, and a relatively few species of non-native and anthropophilic birds were common. These urbanization-enhanced birds were also recorded in previous urban gradient studies in northern California and Ohio. Bird communities along the urban gradient reached their highest richness and abundance in fragments. The marked difference in vegetation structure between urban and natural landscapes in this arid shrubland system likely contributed to this pattern; the presence of native shrubs and exotic trees in fragments enabled both shrub and arboreal nesters to co-occur. As is characteristic of biotic homogenization, urban fragmentation in coastal southern California may increase local diversity but decrease overall regional avifaunal diversity.


Oecologia | 2009

Ecological correlates of risk and incidence of West Nile virus in the United States

Brian F. Allan; R. Brian Langerhans; Wade A. Ryberg; William J. Landesman; Nicholas W. Griffin; Rachael S. Katz; Brad Oberle; Michele R. Schutzenhofer; Kristina N. Smyth; Annabelle de St. Maurice; Larry Clark; Kevin R. Crooks; Daniel E. Hernandez; Robert G. McLean; Richard S. Ostfeld; Jonathan M. Chase

West Nile virus, which was recently introduced to North America, is a mosquito-borne pathogen that infects a wide range of vertebrate hosts, including humans. Several species of birds appear to be the primary reservoir hosts, whereas other bird species, as well as other vertebrate species, can be infected but are less competent reservoirs. One hypothesis regarding the transmission dynamics of West Nile virus suggests that high bird diversity reduces West Nile virus transmission because mosquito blood-meals are distributed across a wide range of bird species, many of which have low reservoir competence. One mechanism by which this hypothesis can operate is that high-diversity bird communities might have lower community-competence, defined as the sum of the product of each species’ abundance and its reservoir competence index value. Additional hypotheses posit that West Nile virus transmission will be reduced when either: (1) abundance of mosquito vectors is low; or (2) human population density is low. We assessed these hypotheses at two spatial scales: a regional scale near Saint Louis, MO, and a national scale (continental USA). We found that prevalence of West Nile virus infection in mosquito vectors and in humans increased with decreasing bird diversity and with increasing reservoir competence of the bird community. Our results suggest that conservation of avian diversity might help ameliorate the current West Nile virus epidemic in the USA


Biological Reviews | 2016

A synthesis of two decades of research documenting the effects of noise on wildlife

Graeme Shannon; Megan F. McKenna; Lisa M. Angeloni; Kevin R. Crooks; Kurt M. Fristrup; Emma Brown; Katy Warner; Misty D. Nelson; Cecilia White; Jessica Briggs; Scott McFarland; George Wittemyer

Global increases in environmental noise levels – arising from expansion of human populations, transportation networks, and resource extraction – have catalysed a recent surge of research into the effects of noise on wildlife. Synthesising a coherent understanding of the biological consequences of noise from this literature is challenging. Taxonomic groups vary in auditory capabilities. A wide range of noise sources and exposure levels occur, and many kinds of biological responses have been observed, ranging from individual behaviours to changes in ecological communities. Also, noise is one of several environmental effects generated by human activities, so researchers must contend with potentially confounding explanations for biological responses. Nonetheless, it is clear that noise presents diverse threats to species and ecosystems and salient patterns are emerging to help inform future natural resource‐management decisions. We conducted a systematic and standardised review of the scientific literature published from 1990 to 2013 on the effects of anthropogenic noise on wildlife, including both terrestrial and aquatic studies. Research to date has concentrated predominantly on European and North American species that rely on vocal communication, with approximately two‐thirds of the data set focussing on songbirds and marine mammals. The majority of studies documented effects from noise, including altered vocal behaviour to mitigate masking, reduced abundance in noisy habitats, changes in vigilance and foraging behaviour, and impacts on individual fitness and the structure of ecological communities. This literature survey shows that terrestrial wildlife responses begin at noise levels of approximately 40 dBA, and 20% of papers documented impacts below 50 dBA. Our analysis highlights the utility of existing scientific information concerning the effects of anthropogenic noise on wildlife for predicting potential outcomes of noise exposure and implementing meaningful mitigation measures. Future research directions that would support more comprehensive predictions regarding the magnitude and severity of noise impacts include: broadening taxonomic and geographical scope, exploring interacting stressors, conducting larger‐scale studies, testing mitigation approaches, standardising reporting of acoustic metrics, and assessing the biological response to noise‐source removal or mitigation. The broad volume of existing information concerning the effects of anthropogenic noise on wildlife offers a valuable resource to assist scientists, industry, and natural‐resource managers in predicting potential outcomes of noise exposure.


Journal of Mammalogy | 2010

Effects of urbanization on carnivore species distribution and richness

Miguel A. Ordeñana; Kevin R. Crooks; Erin E. Boydston; Robert N. Fisher; Lisa M. Lyren; Shalene Siudyla; Christopher D. Haas; Sierra Harris; Stacie A. Hathaway; Greta Turschak; A. Keith Miles; Dirk H. Van Vuren

Abstract Urban development can have multiple effects on mammalian carnivore communities. We conducted a meta-analysis of 7,929 photographs from 217 localities in 11 camera-trap studies across coastal southern California to describe habitat use and determine the effects of urban proximity (distance to urban edge) and intensity (percentage of area urbanized) on carnivore occurrence and species richness in natural habitats close to the urban boundary. Coyotes (Canis latrans) and bobcats (Lynx rufus) were distributed widely across the region. Domestic dogs (Canis lupus familiaris), striped skunks (Mephitis mephitis), raccoons (Procyon lotor), gray foxes (Urocyon cinereoargenteus), mountain lions (Puma concolor), and Virginia opossums (Didelphis virginiana) were detected less frequently, and long-tailed weasels (Mustela frenata), American badgers (Taxidea taxus), western spotted skunks (Spilogale gracilis), and domestic cats (Felis catus) were detected rarely. Habitat use generally reflected availability for most species. Coyote and raccoon occurrence increased with both proximity to and intensity of urbanization, whereas bobcat, gray fox, and mountain lion occurrence decreased with urban proximity and intensity. Domestic dogs and Virginia opossums exhibited positive and weak negative relationships, respectively, with urban intensity but were unaffected by urban proximity. Striped skunk occurrence increased with urban proximity but decreased with urban intensity. Native species richness was negatively associated with urban intensity but not urban proximity, probably because of the stronger negative response of individual species to urban intensity.


PLOS ONE | 2012

Three Pathogens in Sympatric Populations of Pumas, Bobcats, and Domestic Cats: Implications for Infectious Disease Transmission

Sarah N. Bevins; Scott Carver; Erin E. Boydston; Lisa M. Lyren; Mat W. Alldredge; Kenneth A. Logan; Seth P. D. Riley; Robert N. Fisher; T. Winston Vickers; Walter M. Boyce; Mo Salman; Michael R. Lappin; Kevin R. Crooks; Sue VandeWoude

Anthropogenic landscape change can lead to increased opportunities for pathogen transmission between domestic and non-domestic animals. Pumas, bobcats, and domestic cats are sympatric in many areas of North America and share many of the same pathogens, some of which are zoonotic. We analyzed bobcat, puma, and feral domestic cat samples collected from targeted geographic areas. We examined exposure to three pathogens that are taxonomically diverse (bacterial, protozoal, viral), that incorporate multiple transmission strategies (vector-borne, environmental exposure/ingestion, and direct contact), and that vary in species-specificity. Bartonella spp., Feline Immunodeficiency Virus (FIV), and Toxoplasma gondii IgG were detected in all three species with mean respective prevalence as follows: puma 16%, 41% and 75%; bobcat 31%, 22% and 43%; domestic cat 45%, 10% and 1%. Bartonella spp. were highly prevalent among domestic cats in Southern California compared to other cohort groups. Feline Immunodeficiency Virus exposure was primarily associated with species and age, and was not influenced by geographic location. Pumas were more likely to be infected with FIV than bobcats, with domestic cats having the lowest infection rate. Toxoplasma gondii seroprevalence was high in both pumas and bobcats across all sites; in contrast, few domestic cats were seropositive, despite the fact that feral, free ranging domestic cats were targeted in this study. Interestingly, a directly transmitted species-specific disease (FIV) was not associated with geographic location, while exposure to indirectly transmitted diseases – vector-borne for Bartonella spp. and ingestion of oocysts via infected prey or environmental exposure for T. gondii – varied significantly by site. Pathogens transmitted by direct contact may be more dependent upon individual behaviors and intra-specific encounters. Future studies will integrate host density, as well as landscape features, to better understand the mechanisms driving disease exposure and to predict zones of cross-species pathogen transmission among wild and domestic felids.


Landscape Ecology | 2009

A comparison of metrics predicting landscape connectivity for a highly interactive species along an urban gradient in Colorado, USA

Seth B. Magle; David M. Theobald; Kevin R. Crooks

Many organisms persist in fragmented habitat where movement between patches is essential for long-term demographic and genetic stability. In the absence of direct observation of movement, connectivity or isolation metrics are useful to characterize potential patch-level connectivity. However, multiple metrics exist at varying levels of complexity, and empirical data on species distribution are rarely used to compare performance of metrics. We compared 12 connectivity metrics of varying degrees of complexity to determine which metric best predicts the distribution of prairie dog colonies along an urban gradient of 385 isolated habitat patches in Denver, Colorado, USA. We found that a modified version of the incidence function model including area-weighting of patches and a cost-weighted distance surface best predicted occupancy, where we assumed roads were fairly impermeable to movement, and low-lying drainages provided dispersal corridors. We also found this result to be robust to a range of cost weight parameters. Our results suggest that metrics should incorporate both patch area and the composition of the surrounding matrix. These results provide guidance for improved landscape habitat modeling in fragmented landscapes and can help identify target habitat for conservation and management of prairie dogs in urban systems.


Molecular Ecology | 2008

Experimental studies of evolution in guppies: a model for understanding the evolutionary consequences of predator removal in natural communities.

David N. Reznick; Cameron K. Ghalambor; Kevin R. Crooks

Guppies (Poecilia reticulata) in Trinidadian streams are found with a diversity of predators in the lower reaches of streams, but few predators in the headwaters. These differences have caused the adaptive evolution of guppy behaviour, morphology, male colouration and life history. Waterfalls often serve as barriers to the upstream distribution of predators and/or guppies. Such discontinuities make it possible to treat streams like giant test tubes by introducing guppies or predators to small segments of streams from which they were previously excluded. Such experiments enable us to document how fast evolution can occur and the fine spatial scales over which adaptation is possible. They also demonstrate that the role predators play in structuring this ecosystem resembles many others studied from a more purely ecological perspective; in these streams, as elsewhere, predators depress the numbers of individuals in prey species which in turn reduces the effects of the prey species on other trophic levels and hence the structure of the ecosystem. A focus on predators is important in conservation biology because predators are often the organisms that are most susceptible to local extinction. Their selective loss occurs because large predators have been deliberately exterminated and/or are more susceptible to environmental disturbances. Furthermore, we will argue that predator re‐introductions might be destabilizing if, in the absence of predators, their prey have evolved in a fashion that makes them highly susceptible to predation, even after time intervals as short as 50–100 years. A better understanding of the evolutionary impacts of top predators will be critical goal for the policy and practice of large carnivore restoration in the future.

Collaboration


Dive into the Kevin R. Crooks's collaboration.

Top Co-Authors

Avatar

Sue VandeWoude

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Lisa M. Lyren

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Erin E. Boydston

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah N. Bevins

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge