Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin R. Knupp is active.

Publication


Featured researches published by Kevin R. Knupp.


Bulletin of the American Meteorological Society | 2004

The Bow Echo and MCV Experiment: Observations and Opportunities

Christopher A. Davis; Nolan T. Atkins; Diana L. Bartels; Lance F. Bosart; Michael C. Coniglio; George H. Bryan; William R. Cotton; David C. Dowell; Brian F. Jewett; Robert H. Johns; David P. Jorgensen; Jason C. Knievel; Kevin R. Knupp; Wen-Chau Lee; Gregory McFarquhar; James A. Moore; Ron W. Przybylinski; Robert M. Rauber; Bradley F. Smull; Robert J. Trapp; Stanley B. Trier; Roger M. Wakimoto; Morris L. Weisman; Conrad L. Ziegler

The Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) is a research investigation using highly mobile platforms to examine the life cycles of mesoscale convective systems. It represents a combination of two related investigations to study (a) bow echoes, principally those that produce damaging surface winds and last at least 4 h, and (b) larger convective systems that produce long-lived mesoscale convective vortices (MCVs). The field phase of BAMEX utilized three instrumented research aircraft and an array of mobile ground-based instruments. Two long-range turboprop aircraft were equipped with pseudo-dual-Doppler radar capability, the third aircraft was a jet equipped with dropsondes. The aircraft documented the environmental structure of mesoscale convective systems (MCSs), observed the kinematic and thermodynamic structure of the convective line and stratiform regions (where rear-inflow jets and MCVs reside), and captured the structure of mature MCVs. The ground-based instruments augmented sou...


Geophysical Research Letters | 2000

The 1997–98 El Nino event and related wintertime lightning variations in the southeastern United States

Steve Goodman; Dennis E. Buechler; Kevin R. Knupp; Kevin T. Driscoll; Eugene W. McCaul

The El Nino Southern Oscillation (ENSO) is a climate anomaly responsible for worldwide weather impacts ranging from droughts to floods. In the United States, warm episode years are known to produce above normal rainfall along the Southeast U.S. Gulf Coast and into the Gulf of Mexico, with the greatest response observed in the October–March period of the warm episode year. The 1997–98 warm episode is notable for being the strongest event since 1982–83. With the recent launch of a lightning sensor on NASAs Tropical Rainfall Measuring Mission (TRMM) in November 1997 and the detailed coverage of the U.S. National Lightning Detection Network (NLDN), such interannual changes in lightning activity can be examined with far greater detail than ever before. For the 1997–98 ENSO event the most significant year-to-year changes in lightning frequency worldwide occurred along the Gulf Coast and within the Gulf of Mexico basin during the Northern Hemisphere winter. Within a broad swath across the northern Gulf of Mexico basin there is a 100–150% increase in lightning days year-to-year (a peak of 33 days in the winter of 1997–98 vs. only 15 days or fewer in both the 1996–97 and 1998–99 winter). In addition, there is a nearly 200% increase in lightning hours (a peak of 138 hours in 1996–97 vs. 50 hours in both 1996–97 and 1998–99). The increase in lightning activity during ENSO occurs in association with a 100% increase in the number of synoptic scale cyclones that developed within or moved through the Gulf basin. The primary variables controlling these enhancements in thunderstorm activity are the position and strength of the jet stream.


Journal of Atmospheric and Oceanic Technology | 2009

Ground-Based Passive Microwave Profiling during Dynamic Weather Conditions

Kevin R. Knupp; T. Coleman; D. Phillips; Randolph Ware; Domenico Cimini; Francois Vandenberghe; Jothiram Vivekanandan; Ed R. Westwater

Abstract Short-period (1–5 min) temperature and humidity soundings up to 10-km height are retrieved from ground-based 12-channel microwave radiometer profiler (MWRP) observations. In contrast to radiosondes, the radiometric retrievals provide very high temporal resolution (1 min or less) of thermodynamic profiles, but the vertical resolution, which declines in proportion to the height above ground level, is lower. The high temporal resolution is able to resolve detailed meso-γ-scale thermodynamic and limited microphysical features of various rapidly changing mesoscale and/or hazardous weather phenomena. To illustrate the MWRP capabilities and potential benefits to research and operational activities, the authors present example radiometric retrievals from a variety of dynamic weather phenomena including upslope supercooled fog, snowfall, a complex cold front, a nocturnal bore, and a squall line accompanied by a wake low and other rapid variations in low-level water vapor and temperature.


Journal of the Atmospheric Sciences | 1987

Downdrafts within High Plains cumulonimbi. I - General kinematic structure

Kevin R. Knupp

Abstract This paper presents results from a comprehensive investigation in which observations from several case studies an integrated with three-dimensional cloud model results to examine the general kinematic structure of downdrafts associated with High Plains precipitating convection. One particular downdraft type, the low-level precipitation-associated downdraft, is the focus of this paper. General airflow and trajectory patterns within low-level downdrafts are convergent from 0.8 km upwards to downdraft top, typically less than 5 km AGL. Observed mass flux profiles often increase rapidly with height as a result of strong buoyancy forcing below the melting level. Inflow to the low-level downdraft although vertically continuous, can be separated into two branches. The up-down branch originating within the planetary boundary layer initially rises up to 4 km and then descends within the main precipitation-associated downdraft. The midlevel branch, usually more pronounced during early downdraft stages, ori...


Journal of the Atmospheric Sciences | 2006

Observational Analysis of a Gust Front to Bore to Solitary Wave Transition within an Evolving Nocturnal Boundary Layer

Kevin R. Knupp

Abstract The evolution of a gust front to bore to solitary wave transition, and comprehensive information on the evolving nocturnal boundary layer (NBL) associated with this change, are described with analysis of radar and profiler measurements. The observations were obtained on 21 June 2002 in the Oklahoma panhandle during the International H2O Project. The evolution of this system, from a strong bore (initiated by a vigorous gust front) to a solitary wave, was observed over a 4-h period with Doppler radar and surface measurements. Detailed information on the mature bore structure was obtained by a cluster of profiling instruments including two boundary layer wind profilers, a lidar ceilometer, and a microwave profiling radiometer. A strong bore was initiated by an extensive gust front that perturbed an incipient NBL whose development (prior to sunset) was enhanced by shading from the parent mesoscale convective system. At the time of bore formation, the NBL was about 300 m deep and exhibited a surface t...


Journal of Applied Meteorology and Climatology | 2008

Multisensor Estimation of Mixing Heights over a Coastal City

John W. Nielsen-Gammon; Christina Powell; M. J. Mahoney; Wayne M. Angevine; Christoph J. Senff; Allen B. White; Carl M. Berkowitz; Christopher Doran; Kevin R. Knupp

An airborne microwave temperature profiler (MTP) was deployed during the Texas 2000 Air Quality Study (TexAQS-2000) to make measurements of boundary layer thermal structure. An objective technique was developed and tested for estimating the mixed layer (ML) height from the MTP vertical temperature profiles. The technique identifies the ML height as a threshold increase of potential temperature from its minimum value within the boundary layer. To calibrate the technique and evaluate the usefulness of this approach, coincident estimates from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in situ aircraft measurements were compared with each other and with the MTP. Relative biases among all instruments were generally less than 50 m, and the agreement between MTP ML height estimates and other estimates was at least as good as the agreement among the other estimates. The ML height estimates from the MTP and other instruments are utilized to determine the spatial and temporal evolution of ML height in the Houston, Texas, area on 1 September 2000. An elevated temperature inversion was present, so ML growth was inhibited until early afternoon. In the afternoon, large spatial variations in ML height developed across the Houston area. The highest ML heights, well over 2 km, were observed to the north of Houston, while downwind of Galveston Bay and within the late afternoon sea breeze ML heights were much lower. The spatial variations that were found away from the immediate influence of coastal circulations were unexpected, and multiple independent ML height estimates were essential for documenting this feature.


Bulletin of the American Meteorological Society | 2014

Meteorological Overview of the Devastating 27 April 2011 Tornado Outbreak

Kevin R. Knupp; Todd A. Murphy; Timothy A. Coleman; Ryan Wade; Stephanie Mullins; Christopher J. Schultz; Elise V. Schultz; Lawrence D. Carey; Adam Sherrer; Eugene W. McCaul; Brian Carcione; Stephen Latimer; Andy Kula; Kevin Laws; Patrick T. Marsh; Kim Klockow

By many metrics, the tornado outbreak on 27 April 2011 was the most significant tornado outbreak since 1950, exceeding the super outbreak of 3–4 April 1974. The number of tornadoes over a 24-h period (midnight to midnight) was 199; the tornado fatalities and injuries were 316 and more than 2,700, respectively; and the insurable loss exceeded


Bulletin of the American Meteorological Society | 2011

THE HISTORy (AND FUTURE) OF TORNADO WARNINg DISSEMINATION IN THE UNITED STATES

Timothy A. Coleman; Kevin R. Knupp; James Spann; J. B. Elliott; Brian E. Peters

4 billion (U.S. dollars). In this paper, we provide a meteorological overview of this outbreak and illustrate that the event was composed of three mesoscale events: a large early morning quasi-linear convective system (QLCS), a midday QLCS, and numerous afternoon supercell storms. The main data sources include NWS and research radars, profilers, surface measurements, and photos and videos of the tornadoes. The primary motivation for this preliminary research is to document the diverse characteristics (e.g., tornado characteristics and mesoscale organization of deep convection) of this outbreak and summarize preliminary analyses that are worthy of additional research ...


Journal of the Atmospheric Sciences | 1982

An Intense, Quasi-Steady Thunderstorm over Mountainous Terrain. Part II: Doppler Radar Observations of the Storm Morphological Structure

Kevin R. Knupp; William R. Cotton

Since the successful tornado forecast at Tinker AFB in 1948 paved the way for the issuance of tornado warnings, the science of tornado detection and forecasting has advanced greatly. However, tornado warnings must be disseminated to the public to be of any use. The Texas tornado warning conferences in 1953 began to develop the framework for a modern tornado warning system and included radar detection of tornadoes, a spotter network, and improved communications between the U.S. Weather Bureau, spotters, and public officials, allowing more timely warnings and dissemination of those warnings to the public. Commercial radio and television are a main source of warnings for many, and the delivery methods on TV have changed much since 1960. NOAA Weather Radio (NWR) was launched after the 1974 Super Outbreak of tornadoes, with the most important feature being the tone alert that allowed receivers to alert people even when the radio broadcast was turned off. Today, NWR reaches most of the U.S. population, and Spec...


Bulletin of the American Meteorological Society | 2017

The 2015 Plains Elevated Convection at Night Field Project

Bart Geerts; David B. Parsons; Tammy M. Weckwerth; Michael I. Biggerstaff; Richard D. Clark; Michael C. Coniglio; Belay Demoz; Richard A. Ferrare; William A. Gallus; Kevin R. Haghi; John M. Hanesiak; Petra M. Klein; Kevin R. Knupp; Karen Kosiba; Greg M. McFarquhar; James A. Moore; Amin R. Nehrir; Matthew D. Parker; James O. Pinto; Robert M. Rauber; Russ S. Schumacher; David D. Turner; Qing Wang; Xuguang Wang; Zhien Wang; Joshua Wurman

Abstract An analysis of an intense, quasi-steady thunderstorm which developed over mountainous terrain is presented. This storm, extensively analyzed using multiple Doppler radar and surface mesonet data, formed within an environment having strong low-level wind shear. The evolution and characteristics of the mesoscale systems prior to storm formation are presented in Part I (Cotton et al., 1982). Such an environment was responsible for several unique storm features, including a quasi-steady primary updraft circulation and movement 50° to the left of the cloud layer (2–8 km AGL) environmental winds. Several interactions were observed or inferred near and within the storm. Vertical transport of northerly low-level momentum within the updraft imparted a significant blocking on mid-level flow having southerly momentum. Such a blocking affected the movement and characteristics of adjacent, less organized storms. Additional storm-environment interactions produced an organized recirculation of precipitation par...

Collaboration


Dive into the Kevin R. Knupp's collaboration.

Top Co-Authors

Avatar

Timothy A. Coleman

University of Alabama in Huntsville

View shared research outputs
Top Co-Authors

Avatar

Lawrence D. Carey

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Mecikalski

University of Alabama in Huntsville

View shared research outputs
Top Co-Authors

Avatar

Steven J. Goodman

Marshall Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dustin Phillips

University of Alabama in Huntsville

View shared research outputs
Top Co-Authors

Avatar

John F. Burris

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Patrick Gatlin

Marshall Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge