Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin R. Mott is active.

Publication


Featured researches published by Kevin R. Mott.


Journal of Virology | 2002

A Gene Capable of Blocking Apoptosis Can Substitute for the Herpes Simplex Virus Type 1 Latency-Associated Transcript Gene and Restore Wild-Type Reactivation Levels

Guey Chuen Perng; Barak Maguen; Ling Jin; Kevin R. Mott; Nelson Osorio; Susan M. Slanina; Ada Yukht; Homayon Ghiasi; Anthony B. Nesburn; Melissa Inman; Gail Henderson; Clinton Jones; Steven L. Wechsler

ABSTRACT After ocular herpes simplex virus type 1 (HSV-1) infection, the virus travels up axons and establishes a lifelong latent infection in neurons of the trigeminal ganglia. LAT (latency-associated transcript), the only known viral gene abundantly transcribed during HSV-1 neuronal latency, is required for high levels of reactivation. The LAT function responsible for this reactivation phenotype is not known. Recently, we showed that LAT can block programmed cell death (apoptosis) in neurons of the trigeminal ganglion in vivo and in tissue culture cells in vitro (G.-C. Perng et al., Science 287:1500–1503, 2000; M. Inman et al., J. Virol. 75:3636–3646, 2001). Consequently, we proposed that this antiapoptosis function may be a key to the mechanism by which LAT enhances reactivation. To study this further, we constructed a recombinant HSV-1 virus in which the HSV-1 LAT gene was replaced by an alternate antiapoptosis gene. We used the bovine herpes virus 1 (BHV-1) latency-related (LR) gene, which was previously shown to have antiapoptosis activity, for this purpose. The resulting chimeric virus, designated CJLAT, contains two complete copies of the BHV-1 LR gene (one in each viral long repeat) in place of the normal two copies of the HSV-1 LAT, on an otherwise wild-type HSV-1 strain McKrae genomic background. We report here that in both rabbits and mice reactivation of CJLAT was significantly greater than the LAT null mutant dLAT2903 (P < 0.0004 and P = 0.001, respectively) and was at least as efficient as wild-type McKrae. This strongly suggests that a BHV-1 LR gene function was able to efficiently substitute for an HSV-1 LAT gene function involved in reactivation. Although replication of CJLAT in rabbits and mice was similar to that of wild-type McKrae, CJLAT killed more mice during acute infection and caused more corneal scarring in latently infected rabbits. This suggested that the BHV-1 LR gene and the HSV-1 LAT gene are not functionally identical. However, LR and LAT both have antiapoptosis activity. These studies therefore strongly support the hypothesis that replacing LAT with an antiapoptosis gene restores the wild-type reactivation phenotype to a LAT null mutant of HSV-1 McKrae.


Journal of Virology | 2011

The Role of LAT in Increased CD8+ T Cell Exhaustion in Trigeminal Ganglia of Mice Latently Infected with Herpes Simplex Virus 1

Sariah J. Allen; Pedram Hamrah; David Gate; Kevin R. Mott; Dimosthenis Mantopoulos; Lixin Zheng; Terrence Town; Clinton Jones; Ulrich H. von Andrian; Gordon J. Freeman; Arlene H. Sharpe; Lbachir BenMohamed; Rafi Ahmed; Steven L. Wechsler; Homayon Ghiasi

ABSTRACT Herpes simplex virus (HSV) infection is a classic example of latent viral infection in humans and experimental animal models. The HSV-1 latency-associated transcript (LAT) plays a major role in the HSV-1 latency reactivation cycle and thus in recurrent disease. Whether the presence of LAT leads to generation of dysfunctional T cell responses in the trigeminal ganglia (TG) of latently infected mice is not known. To address this issue, we used LAT-positive [LAT(+)] and LAT-deficient [LAT(−)] viruses to evaluate the effect of LAT on CD8 T cell exhaustion in TG of latently infected mice. The amount of latency as determined by quantitative reverse transcription-PCR (qRT-PCR) of viral DNA in total TG extracts was 3-fold higher with LAT(+) than with LAT(−) virus. LAT expression and increased latency correlated with increased mRNA levels of CD8, PD-1, and Tim-3. PD-1 is both a marker for exhaustion and a primary factor leading to exhaustion, and Tim-3 can also contribute to exhaustion. These results suggested that LAT(+) TG contain both more CD8+ T cells and more CD8+ T cells expressing the exhaustion markers PD-1 and Tim-3. This was confirmed by flow cytometry analyses of expression of CD3/CD8/PD-1/Tim-3, HSV-1, CD8+ T cell pentamer (specific for a peptide derived from residues 498 to 505 of glycoprotein B [gB498–505]), interleukin-2 (IL-2), and tumor necrosis factor alpha (TNF-α). The functional significance of PD-1 and its ligands in HSV-1 latency was demonstrated by the significantly reduced amount of HSV-1 latency in PD-1- and PD-L1-deficient mice. Together, these results may suggest that both PD-1 and Tim-3 are mediators of CD8+ T cell exhaustion and latency in HSV-1 infection.


Journal of Virology | 2009

Level of Herpes Simplex Virus Type 1 Latency Correlates with Severity of Corneal Scarring and Exhaustion of CD8+ T Cells in Trigeminal Ganglia of Latently Infected Mice

Kevin R. Mott; Catherine Bresee; Sariah J. Allen; Lbachir BenMohamed; Steven L. Wechsler; Homayon Ghiasi

ABSTRACT A hallmark of infection with herpes simplex virus type 1 (HSV-1) is the establishment of latency in ganglia of the infected individual. During the life of the latently infected individual, the virus can occasionally reactivate, travel back to the eye, and cause recurrent disease. Indeed, a major cause of corneal scarring (CS) is the scarring induced by HSV-1 following reactivation from latency. In this study, we evaluated the relationship between the amount of CS and the level of the HSV-1 latency-associated transcript (LAT) in trigeminal ganglia (TG) of latently infected mice. Our results suggested that the amount of CS was not related to the amount of virus replication following primary ocular HSV-1 infection, since replication in the eyes was similar in mice that did not develop CS, mice that developed CS in just one eye, and mice that developed CS in both eyes. In contrast, mice with no CS had significantly less LAT, and thus presumably less latency, in their TG than mice that had CS in both eyes. Higher CS also correlated with higher levels of mRNAs for PD-1, CD4, CD8, F4/80, interleukin-4, gamma interferon, granzyme A, and granzyme B in both cornea and TG. These results suggest that (i) the immunopathology induced by HSV-1 infection does not correlate with primary virus replication in the eye; (ii) increased CS appears to correlate with increased latency in the TG, although the possible cause-and-effect relationship is not known; and (iii) increased latency in mouse TG correlates with higher levels of PD-1 mRNA, suggesting exhaustion of CD8+ T cells.


Journal of Virology | 2002

A Novel Herpes Simplex Virus Type 1 Transcript (AL-RNA) Antisense to the 5′ End of the Latency-Associated Transcript Produces a Protein in Infected Rabbits

Guey Chuen Perng; Barak Maguen; Ling Jin; Kevin R. Mott; John Kurylo; Lbachir BenMohamed; Ada Yukht; Nelson Osorio; Anthony B. Nesburn; Gail Henderson; Melissa Inman; Clinton Jones; Steven L. Wechsler

ABSTRACT Following primary ocular infection, herpes simplex virus type 1 (HSV-1) establishes a lifelong latent infection in sensory neurons of the trigeminal ganglia. Latency-associated transcript (LAT), the only known viral gene abundantly transcribed during HSV-1 neuronal latency, is required for high levels of reactivation. Recently we showed that three different mutants that do not alter the LAT promoter but contain deletions within the 5′ end of the primary LAT transcript affect viral virulence (G. C. Perng et al., J. Virol. 75:9018-9028, 2001). In contrast, in LAT-null mutants viral virulence appears unaltered (T. M. Block et al., Virology 192:618-630, 1993; D. C. Bloom et al., J. Virol. 68:1283-1292, 1994; J. M. Hill et al., Virology 174:117-125, 1990; G. C. Perng et al., J. Virol. 68:8045-8055, 1994; F. Sedarati, K. M. Izumi, E. K. Wagner, and J. G. Stevens, J. Virol. 63:4455-4458, 1989). We therefore hypothesized that the 5′ end of LAT and/or an as yet unidentified gene that overlaps part of this region is involved in viral virulence. We report here on the discovery and initial characterization of a novel HSV-1 RNA consistent with such a putative gene. The novel RNA was antisense to the 5′ end of LAT and was designated AL-RNA (anti-LAT sense RNA). The AL-RNA overlapped the core LAT promoter and the first 158 nucleotides of the 5′ end of the primary LAT transcript. AL-RNA was detected in extracts from neuron-like cells (PC-12) infected with wild-type HSV-1 but not in cells infected with a mutant with the AL region deleted. The deletions in each of the above three mutants with altered virulence encompass the 5′ end of the AL-RNA, and these mutants cannot transcribe AL. This supports the hypothesis that the AL gene may play a role in viral virulence. Based on comparison to the corresponding genomic sequence, the AL-RNA did not appear to be spliced. The AL-RNA was polyadenylated and contained an open reading frame capable of encoding a protein 56 amino acids in length with a predicted molecular mass of 6.8 kDa. Sera from three of three rabbits infected with wild-type HSV-1 but not sera from any of three rabbits infected with a mutant with the AL-RNA region deleted recognized the Escherichia coli recombinantly expressed AL open reading frame on Western blots. In addition, four of six rabbits infected with wild-type virus developed enzyme-linked immunosorbent assay titers against one or more AL synthetic peptides. These results suggest that an AL protein is produced in vivo.


Journal of Virology | 2001

Three Herpes Simplex Virus Type 1 Latency-Associated Transcript Mutants with Distinct and Asymmetric Effects on Virulence in Mice Compared with Rabbits

Guey Chuen Perng; Daniel Esmaili; Susan M. Slanina; Ada Yukht; Homayon Ghiasi; Nelson Osorio; Kevin R. Mott; Barak Maguen; Ling Jin; Anthony B. Nesburn; Steven L. Wechsler

ABSTRACT Herpes simplex virus type 1 latency-associated transcript (LAT)-null mutants have decreased reactivation but normal virulence in rabbits and mice. We report here on dLAT1.5, a mutant with LAT nucleotides 76 to 1667 deleted. Following ocular infection of rabbits, dLAT1.5 reactivated at a lower rate than its wild-type parent McKrae (6.1 versus 11.8%; P = 0.0025 [chi-square test]). Reactivation was restored in the marker-rescued virus dLAT1.5R (12.6%;P = 0.53 versus wild type), confirming the importance of the deleted region in spontaneous reactivation. Compared with wild-type or marker-rescued virus, dLAT1.5 had similar or slightly reduced virulence in rabbits (based on survival following ocular infection). In contrast, in mice,dLAT1.5 had increased virulence (P< 0.0001). Thus, deletion of LAT nucleotides 76 to 1667 increased viral virulence in mice but not in rabbits. In contrast, we also report here that LAT2.9A, a LAT mutant that we previously reported to have increased virulence in rabbits (G. C. Perng, S. M. Slanina, A. Yuhkt, B. S. Drolet, W. J. Keleher, H. Ghiasi, A. B. Nesburn, and S. L. Wechsler, J. Virol. 73:920–929, 1999), had decreased virulence in mice (P = 0.03). In addition, we also found that dLAT371, a LAT mutant that we previously reported to have wild-type virulence in rabbits (G. C. Perng, S. M. Slanina, H. Ghiasi, A. B. Nesburn, and S. L. Wechsler, J. Virol. 70:2014–2018, 1996), had decreased virulence in mice (P < 0.05). Thus, these three mutants, each of which encodes a different LAT RNA, have different virulence phenotypes. dLAT1.5 had wild-type virulence in rabbits but increased virulence in mice. In contrast, LAT2.9A had increased virulence in rabbits but decreased virulence in mice, anddLAT371 had wild-type virulence in rabbits but decreased virulence in mice. Taken together, these results suggest that (i) the 5′ end of LAT and/or a gene that overlaps part of this region is involved in viral virulence, (ii) this virulence appears to have species-specific effects, and (iii) regulation of this virulence may be complex.


Journal of Virology | 2005

A herpes simplex virus type 1 mutant expressing a baculovirus inhibitor of apoptosis gene in place of latency-associated transcript has a wild-type reactivation phenotype in the mouse

Ling Jin; Guey Chuen Perng; Kevin R. Mott; Nelson Osorio; Julie Naito; David J. Brick; Dale Carpenter; Clinton Jones; Steven L. Wechsler

ABSTRACT The latency-associated transcript (LAT) is essential for the wild-type herpes simplex virus type 1 (HSV-1) high-reactivation phenotype since LAT− mutants have a low-reactivation phenotype. We previously reported that LAT can decrease apoptosis and proposed that this activity is involved in LATs ability to enhance the HSV-1 reactivation phenotype. The first 20% of the primary 8.3-kb LAT transcript is sufficient for enhancing the reactivation phenotype and for decreasing apoptosis, supporting this proposal. For this study, we constructed an HSV-1 LAT− mutant that expresses the baculovirus antiapoptosis gene product cpIAP under control of the LAT promoter and in place of the LAT region mentioned above. Mice were ocularly infected with this mutant, designated dLAT-cpIAP, and the reactivation phenotype was determined using the trigeminal ganglion explant model. dLAT-cpIAP had a reactivation phenotype similar to that of wild-type virus and significantly higher than that of (i) the LAT− mutant dLAT2903; (ii) dLAT1.5, a control virus containing the same LAT deletion as dLAT-cpIAP, but with no insertion of foreign DNA, thereby controlling for potential readthrough transcription past the cpIAP insert; and (iii) dLAT-EGFP, a control virus identical to dLAT-cpIAP except that it contained the enhanced green fluorescent protein open reading frame (ORF) in place of the cpIAP ORF, thereby controlling for expression of a random foreign gene instead of the cpIAP gene. These results show that an antiapoptosis gene with no sequence similarity to LAT can efficiently substitute for the LAT function involved in enhancing the in vitro-induced HSV-1 reactivation phenotype in the mouse.


Investigative Ophthalmology & Visual Science | 2009

The Role of a Glycoprotein K (gK) CD8+ T-Cell Epitope of Herpes Simplex Virus on Virus Replication and Pathogenicity

Kevin R. Mott; Aziz Alami Chentoufi; Dale Carpenter; Lbachir BenMohamed; Steven L. Wechsler; Homayon Ghiasi

PURPOSE The authors recently reported that a recombinant HSV-1 expressing two extra copies of glycoprotein K (gK) exacerbated corneal scarring (CS) in mice. The authors also identified a peptide, STVVLITAYGLVLVW, within the signal sequence of gK as an immunodominant gK T-cell-stimulatory region both in vitro and in vivo and identified a highly conserved potential CD8(+) T-cell epitope (ITAYGLVL) within the peptide. In this study, the effect of giving this octamer (8mer) as an eye drop 1 hour before ocular infection with HSV-1 was investigated. METHODS Naive mice and rabbits received the gK 8mer or control peptides as eye drops and were then ocularly infected with HSV-1. Virus replication in the eye and trigeminal ganglia (TG), survival, CS, and relative amounts of gB, gK, CD4, CD8, IFN-gamma, and granzyme A/B transcripts were determined in the cornea and TG of infected animals at various times after infection. The effect of the gK 8mer was also analyzed in immunized HLA transgenic mice. RESULTS The gK 8mer resulted in a short-term significant increase in virus replication in the eyes of BALB/c mice, C57BL/6 mice, and NZW rabbits. gK 8mer treatment also increased viral neurovirulence and viral induced CS in ocularly infected mice. Moreover, in HSV-infected humanized HLA-A*0201 transgenic mice, the gK 8mer epitope induced strong IFN-gamma-producing cytotoxic CD8(+) T-cell responses, as assessed by CD107a/b expression and IFN-gamma ELISAs. CONCLUSIONS gK 8mer induced CD8(+) T-cell responses were unlikely to occur soon enough to account for increased virus replication on day 1 after infection. In contrast, the data are consistent with CD8(+) T cells being involved in the appearance of CS at late times after infection. In addition, the gK peptide may affect viral replication and innate immune responses through other undefined mechanisms.


Journal of Virology | 2007

A Recombinant Herpes Simplex Virus Type 1 Expressing Two Additional Copies of gK Is More Pathogenic than Wild-Type Virus in Two Different Strains of Mice

Kevin R. Mott; Guey Chuen Perng; Yanira Osorio; Konstantin G. Kousoulas; Homayon Ghiasi

ABSTRACT The effect of glycoprotein K (gK) overexpression on herpes simplex virus type 1 (HSV-1) infection in two different strains of mice was evaluated using a recombinant HSV-1 virus that expresses two additional copies of the gK gene in place of the latency-associated transcript (LAT). This mutant virus (HSV-gK3) expressed higher levels of gK than either the wild-type McKrae virus or the parental dLAT2903 virus both in vitro (in cultured cells) and in vivo (in infected mouse corneas and trigeminal ganglia [TG] of BALB/c and C57BL/6 mice). gK transcripts were detected in the TG of both HSV-gK3-infected mouse strains on day 30 postinfection (p.i.), while gB transcripts were detected only in the TG of the HSV-gK3-infected C57BL/6 mice, a finding that suggests that increased gK levels promote chronic infection. C57BL/6 mice infected with HSV-gK3 also contained free virus in their TG on day 30 p.i. Both HSV-gK3-infected mouse strains had significantly higher corneal scarring (CS) than did McKrae-infected mice. T-cell depletion studies in C57BL/6 mice suggested that this CS enhancement in the HSV-gK3-infected mice was mediated by a CD8+ T-cell response. Taken together, these results strongly suggest that increased gK levels promote eye disease and chronic infection in infected mice.


Gene Therapy | 2011

Use of cytokine immunotherapy to block CNS demyelination induced by a recombinant HSV-1 expressing IL-2.

Mandana Zandian; Kevin R. Mott; Sariah J. Allen; Oana M. Dumitrascu; Jane Z Kuo; Homayon Ghiasi

We previously have described a model of multiple sclerosis (MS) in which constitutive expression of murine interleukin (IL)-2 by herpes simplex virus type 1 (HSV-1) (HSV-IL-2) causes central nervous system (CNS) demyelination in different strains of mice. In the current study, we investigated whether this HSV-IL-2-induced demyelination can be blocked using recombinant viruses expressing different cytokines or by injection of plasmid DNA. We have found that coinfection of HSV-IL-2-infected mice with recombinant viruses expressing IL-12p35, IL-12p40 or IL-12p35+IL-12p40 did not block the CNS demyelination, and that coinfection with a recombinant virus expressing interferon (IFN)-γ exacerbated it. In contrast, coinfection with a recombinant virus expressing IL-4 reduced demyelination, whereas coinfection of HSV-IL-2-infected mice with a recombinant HSV-1 expressing the IL-12 heterodimer (HSV-IL-12p70) blocked the CNS demyelination in a dose-dependent manner. Similarly, injection of IL-12p70 DNA blocked HSV-IL-2-induced CNS demyelination in a dose-dependent manner and injection of IL-35 DNA significantly reduced CNS demyelination. Injection of mice with IL-12p35 DNA, IL-12p40 DNA, IL-12p35+IL-12p40 DNA or IL-23 DNA did not have any effect on HSV-IL-2-induced demyelination, whereas injection of IL-27 DNA increased the severity of the CNS demyelination in the HSV-IL-2-infected mice. This study demonstrates for the first time that IL-12p70 can block HSV-IL-2-induced CNS demyelination and that IL-35 can also reduce this demyelination, whereas IFN-γ and IL-27 exacerbated the demyelination in the CNS of the HSV-IL-2-infected mice. Our results suggest a potential role for IL-12p70 and IL-35 signaling in the inhibition of HSV-IL-2-induced immunopathology by preventing development of autoaggressive T cells.


Virology Journal | 2009

A role for the JAK-STAT1 pathway in blocking replication of HSV-1 in dendritic cells and macrophages

Kevin R. Mott; David M. Underhill; Steven L. Wechsler; Terrence Town; Homayon Ghiasi

BackgroundMacrophages and dendritic cells (DCs) play key roles in host defense against HSV-1 infection. Although macrophages and DCs can be infected by herpes simplex virus type 1 (HSV-1), both cell types are resistant to HSV-1 replication. The aim of our study was to determine factor (s) that are involved in the resistance of DCs and macrophages to productive HSV-1 infection.ResultsWe report here that, in contrast to bone marrow-derived DCs and macrophages from wild type mice, DCs and macrophages isolated from signal transducers and activators of transcription-1 deficient (STAT1-/-) mice were susceptible to HSV-1 replication and the production of viral mRNAs and DNA. There were differences in expression of immediate early, early, and late gene transcripts between STAT1+/+ and STAT1-/- infected APCs.ConclusionThese results suggest for the first time that the JAK-STAT1 pathway is involved in blocking replication of HSV-1 in DCs and macrophages.

Collaboration


Dive into the Kevin R. Mott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sariah J. Allen

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guey Chuen Perng

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Mandana Zandian

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Clinton Jones

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Nelson Osorio

University of California

View shared research outputs
Top Co-Authors

Avatar

Terrence Town

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Ling Jin

Oregon State University

View shared research outputs
Top Co-Authors

Avatar

H. Ghiasi

Cedars-Sinai Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge