Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin R. Sowers is active.

Publication


Featured researches published by Kevin R. Sowers.


Current Opinion in Biotechnology | 2002

Low-temperature extremophiles and their applications

Ricardo Cavicchioli; Khawar Sohail Siddiqui; David Andrews; Kevin R. Sowers

Psychrophilic (cold-adapted) organisms and their products have potential applications in a broad range of industrial, agricultural and medical processes. In order for growth to occur in low-temperature environments, all cellular components must adapt to the cold. This fact, in combination with the diversity of Archaea, Bacteria and Eucarya isolated from cold environments, highlights the breadth and type of biological products and processes that might be exploited for biotechnology. Relative to this undisputed potential, psychrophiles and their products are under-utilised in biotechnology; however, recent advances, particularly with cold-active enzymes, herald rapid growth for this burgeoning field.


Journal of Bacteriology | 2006

The Methanosarcina barkeri Genome: Comparative Analysis with Methanosarcina acetivorans and Methanosarcina mazei Reveals Extensive Rearrangement within Methanosarcinal Genomes

Dennis L. Maeder; Iain Anderson; Thomas Brettin; David Bruce; Paul Gilna; Cliff Han; Alla Lapidus; William W. Metcalf; Elizabeth Saunders; Roxanne Tapia; Kevin R. Sowers

We report here a comparative analysis of the genome sequence of Methanosarcina barkeri with those of Methanosarcina acetivorans and Methanosarcina mazei. The genome of M. barkeri is distinguished by having an organization that is well conserved with respect to the other Methanosarcina spp. in the region proximal to the origin of replication, with interspecies gene similarities as high as 95%. However, it is disordered and marked by increased transposase frequency and decreased gene synteny and gene density in the distal semigenome. Of the 3,680 open reading frames (ORFs) in M. barkeri, 746 had homologs with better than 80% identity to both M. acetivorans and M. mazei, while 128 nonhypothetical ORFs were unique (nonorthologous) among these species, including a complete formate dehydrogenase operon, genes required for N-acetylmuramic acid synthesis, a 14-gene gas vesicle cluster, and a bacterial-like P450-specific ferredoxin reductase cluster not previously observed or characterized for this genus. A cryptic 36-kbp plasmid sequence that contains an orc1 gene flanked by a presumptive origin of replication consisting of 38 tandem repeats of a 143-nucleotide motif was detected in M. barkeri. Three-way comparison of these genomes reveals differing mechanisms for the accrual of changes. Elongation of the relatively large M. acetivorans genome is the result of uniformly distributed multiple gene scale insertions and duplications, while the M. barkeri genome is characterized by localized inversions associated with the loss of gene content. In contrast, the short M. mazei genome most closely approximates the putative ancestral organizational state of these species.


Applied and Environmental Microbiology | 2002

Identification of a Bacterium That Specifically Catalyzes the Reductive Dechlorination of Polychlorinated Biphenyls with Doubly Flanked Chlorines

Qingzhong Wu; Joy E. M. Watts; Kevin R. Sowers; Harold D. May

ABSTRACT A microorganism whose growth is linked to the dechlorination of polychlorinated biphenyls (PCBs) with doubly flanked chlorines was identified. Identification was made by reductive analysis of community 16S ribosomal DNA (rDNA) sequences from a culture enriched in the presence of 2,3,4,5-tetrachlorobiphenyl (2,3,4,5-CB), which was dechlorinated at the para position. Denaturing gradient gel electrophoresis (DGGE) analysis of total 16S rDNA extracted from the culture led to identification of three operational taxonomic units (OTUs 1, 2, and 3). OTU 1 was always detected when 2,3,4,5-CB or other congeners with doubly flanked chlorines were present and dechlorinated. Only OTUs 2 and 3 were detected in the absence of PCBs and when other PCBs (i.e., PCBs lacking doubly flanked chlorines) were not dechlorinated. Partial sequences of OTUs 2 and 3 exhibited 98.2% similarity to the sequence of “Desulfovibrio caledoniensis” (accession no. DCU53465 ). A sulfate-reducing vibrio isolated from the culture generated OTUs 2 and 3. This organism could not dechlorinate 2,3,4,5-CB. From these results we concluded that OTU 1 represents the dechlorinating bacterium growing in a coculture with a Desulfovibrio sp. The 16S rDNA sequence of OTU 1 is most similar to the 16S rDNA sequence of bacterium o-17 (89% similarity), an ortho-PCB-dechlorinating bacterium. The PCB dechlorinator, designated bacterium DF-1, reductively dechlorinates congeners with doubly flanked chlorines when it is supplied with formate or H2-CO2 (80:20).


Aquaculture | 2003

Characterization of the microbial community and nitrogen transformation processes associated with moving bed bioreactors in a closed recirculated mariculture system

Yossi Tal; Joy E. M. Watts; Susan B. Schreier; Kevin R. Sowers; Harold J. Schreier

The microbial consortium of a moving bed bioreactor (MBB) connected to a marine recirculating aquaculture system was examined by denaturing gradient gel electrophoresis (DGGE) of amplified 16S rRNA gene fragments. Both ammonia and nitrite oxidizers, Nitrosomonas cryotolerans and Nitrospira marina, respectively, were found associated with the marine system as well as a number of heterotrophic bacteria, including Pseudomonas sp. and Sphingomonas sp. In addition, two Planctomycetes sp. were detected in the system suggesting the capability for anaerobic ammonia oxidation (anammox). The potential for carrying out different nitrogen transformation processes—nitrification, denitrification and anammox—by the bead consortium in both low and high organic load MBBs was measured by short-term batch incubation. Beads with a high organic load exhibited a lower nitrification rate (25 mg NH3–N/m2/h) than low organic load beads (31.5 mg NH3–N/m2/h) as well as the ability to carry out denitrification and anammox processes. The potential of using MBBs to induce different nitrogen transformation processes was evaluated, and it was found that this type of bioreactor has the capability to serve as a platform for mediating desired anoxic processes such as denitrification and anammox.


Applied and Environmental Microbiology | 2007

Microbial Reductive Dechlorination of Aroclor 1260 in Baltimore Harbor Sediment Microcosms Is Catalyzed by Three Phylotypes within the Phylum Chloroflexi

Sonja K. Fagervold; Harold D. May; Kevin R. Sowers

ABSTRACT The specific dechlorination pathways for Aroclor 1260 were determined in Baltimore Harbor sediment microcosms developed with the 11 most predominant congeners from this commercial mixture and their resulting dechlorination intermediates. Most of the polychlorinated biphenyl (PCB) congeners were dechlorinated in the meta position, and the major products were tetrachlorobiphenyls with unflanked chlorines. Using PCR primers specific for the 16S rRNA genes of known PCB-dehalogenating bacteria, we detected three phylotypes within the microbial community that had the capability to dechlorinate PCB congeners present in Aroclor 1260 and identified their selective activities. Phylotype DEH10, which has a high level of sequence identity to Dehalococcoides spp., removed the double-flanked chlorine in 234-substituted congeners and exhibited a preference for para-flanked meta-chlorines when no double-flanked chlorines were available. Phylotype SF1 had similarity to the o-17/DF-1 group of PCB-dechlorinating bacteria. Phylotype SF1 dechlorinated all of the 2345-substituted congeners, mostly in the double-flanked meta position and 2356-, 236-, and 235-substituted congeners in the ortho-flanked meta position, with a few exceptions. A phylotype with 100% sequence identity to PCB-dechlorinating bacterium o-17 was responsible for an ortho and a double-flanked meta dechlorination reaction. Most of the dechlorination pathways supported the growth of all three phylotypes based on competitive PCR enumeration assays, which indicates that PCB-impacted environments have the potential to sustain populations of these PCB-dechlorinating microorganisms. The results demonstrate that the variation in dechlorination patterns of congener mixtures typically observed at different PCB impacted sites can potentially be mediated by the synergistic activities of relatively few dechlorinating species.


Applied and Environmental Microbiology | 2008

Dehalorespiration with Polychlorinated Biphenyls by an Anaerobic Ultramicrobacterium

Harold D. May; Greg S. Miller; Birthe Venø Kjellerup; Kevin R. Sowers

ABSTRACT Anaerobic microbial dechlorination is an important step in the detoxification and elimination of polychlorinated biphenyls (PCBs), but a microorganism capable of coupling its growth to PCB dechlorination has not been isolated. Here we describe the isolation from sediment of an ultramicrobacterium, strain DF-1, which is capable of dechlorinating PCBs containing double-flanked chlorines added as single congeners or as Aroclor 1260 in contaminated soil. The isolate requires Desulfovibrio spp. in coculture or cell extract for growth on hydrogen and PCB in mineral medium. This is the first microorganism in pure culture demonstrated to grow by dehalorespiration with PCBs and the first isolate shown to dechlorinate weathered commercial mixtures of PCBs in historically contaminated sediments. The ability of this isolate to grow on PCBs in contaminated sediments represents a significant breakthrough for the development of in situ treatment strategies for this class of persistent organic pollutants.


Applied and Environmental Microbiology | 2005

Sequential Reductive Dechlorination of meta-Chlorinated Polychlorinated Biphenyl Congeners in Sediment Microcosms by Two Different Chloroflexi Phylotypes

Sonja K. Fagervold; Joy E. M. Watts; Harold D. May; Kevin R. Sowers

ABSTRACT Three species within a deeply branching cluster of the Chloroflexi are the only microorganisms currently known to anaerobically transform polychlorinated biphenyls (PCBs) by the mechanism of reductive dechlorination. A selective PCR primer set was designed that amplifies the 16S rRNA genes of a monophyletic group within the Chloroflexi including Dehalococcoides spp. and the o-17/DF-1 group. Assays for both qualitative and quantitative analyses by denaturing gradient gel electrophoresis and most probable number-PCR, respectively, were developed to assess sediment microcosm enrichments that reductively dechlorinated PCBs 101 (2,2′,4,5,5′-CB) and 132 (2,2′,3,3′,4,6′-CB). PCB 101 was reductively dechlorinated at the para-flanked meta position to PCB 49 (2,2′,4,5′-CB) by phylotype DEH10, which belongs to the Dehalococcoides group. This same species reductively dechlorinated the para- and ortho-flanked meta-chlorine of PCB 132 to PCB 91 (2,2′,3′,4,6′-CB). However, another phylotype designated SF1, which is more closely related to the o-17/DF-1 group, was responsible for the subsequent dechlorination of PCB 91 to PCB 51 (2,2′,4,6′-CB). Using the selective primer set, an increase in 16S rRNA gene copies was observed only with actively dechlorinating cultures, indicating that PCB-dechlorinating activities by both phylotype DEH10 and SF1 were linked to growth. The results suggest that individual species within the Chloroflexi exhibit a limited range of congener specificities and that a relatively diverse community of species within a deeply branching group of Chloroflexi with complementary congener specificities is likely required for the reductive dechlorination of different PCBs congeners in the environment.


Environmental Science & Technology | 2011

Enhanced reductive dechlorination of polychlorinated biphenyl impacted sediment by bioaugmentation with a dehalorespiring bacterium.

Rayford B. Payne; Harold D. May; Kevin R. Sowers

Anaerobic reductive dehalogenation of commercial PCBs such as Aroclor 1260 has a critical role of transforming highly chlorinated congeners to less chlorinated congeners that are then susceptible to aerobic degradation. The efficacy of bioaugmentation with the dehalorespiring bacterium Dehalobium chlorocoercia DF1 was tested in 2-L laboratory mesocosms containing sediment contaminated with weathered Aroclor 1260 (1.3 ppm) from Baltimore Harbor, MD. Total penta- and higher chlorinated PCBs decreased by approximately 56% (by mass) in bioaugmented mesocosms after 120 days compared with no activity observed in unamended controls. Bioaugmentation with DF-1 enhanced the dechlorination of doubly flanked chlorines and stimulated the dechlorination of single flanked chlorines as a result of an apparent synergistic effect on the indigenous population. Addition of granulated activated carbon had a slight stimulatory effect indicating that anaerobic reductive dechlorination of PCBs at low concentrations was not inhibited by a high background of inorganic carbon that could affect bioavailability. The total number of dehalorespiring bacteria was reduced by approximately half after 60 days. However, a steady state level was maintained that was greater than the indigenous population of putative dehalorespiring bacteria in untreated sediments and DF1 was maintained within the indigenous population after 120 days. The results of this study demonstrate that bioaugmentation with dehalorespiring bacteria has a stimulatory effect on the dechlorination of weathered PCBs and supports the feasibility of using in situ bioaugmentation as an environmentally less invasive and lower cost alternate to dredging for treatment of PCB impacted sediments.


Applied and Environmental Microbiology | 2000

Establishment of a Polychlorinated Biphenyl-Dechlorinating Microbial Consortium, Specific for Doubly Flanked Chlorines, in a Defined, Sediment-Free Medium

Qingzhong Wu; Kevin R. Sowers; Harold D. May

ABSTRACT Estuarine sediment from Charleston Harbor, South Carolina, was used as inoculum for the development of an anaerobic enrichment culture that specifically dechlorinates doubly flanked chlorines (i.e., chlorines bound to carbon that are flanked on both sides by other chlorine-carbon bonds) of polychlorinated biphenyls (PCBs). Dechlorination was restricted to the para chlorine in cultures enriched with 10 mM fumarate, 50 ppm (173 μM) 2,3,4,5-tetrachlorobiphenyl, and no sediment. Initially the rate of dechlorination decreased upon the removal of sediment from the medium. However, the dechlorinating activity was sustainable, and following sequential transfer in a defined, sediment-free estuarine medium, the activity increased to levels near that observed with sediment. The culture was nonmethanogenic, and molybdate, ampicillin, chloramphenicol, neomycin, and streptomycin inhibited dechlorination activity; bromoethanesulfonate and vancomycin did not. Addition of 17 PCB congeners indicated that the culture specifically removes double flanked chlorines, preferably in the para position, and does not attack ortho chlorines. This is the first microbial consortium shown to para or metadechlorinate a PCB congener in a defined sediment-free medium. It is the second PCB-dechlorinating enrichment culture to be sustained in the absence of sediment, but its dechlorinating capabilities are entirely different from those of the other sediment-free PCB-dechlorinating culture, an ortho-dechlorinating consortium, and do not match any previously published Aroclor-dechlorinating patterns.


Biochemistry | 2009

The Archetype γ-Class Carbonic Anhydrase (Cam) Contains Iron When Synthesized in Vivo†

Sheridan R. MacAuley; Sabrina A. Zimmerman; Ethel E. Apolinario; Caryn Evilia; Ya-Ming Hou; James G. Ferry; Kevin R. Sowers

A recombinant protein overproduction system was developed in Methanosarcina acetivorans to facilitate biochemical characterization of oxygen-sensitive metalloenzymes from strictly anaerobic species in the Archaea domain. The system was used to overproduce the archetype of the independently evolved gamma-class carbonic anhydrase. The overproduced enzyme was oxygen sensitive and had full incorporation of iron instead of zinc observed when overproduced in Escherichia coli. This, the first report of in vivo iron incorporation for any carbonic anhydrase, supports the need to reevaluate the role of iron in all classes of carbonic anhydrases derived from anaerobic environments.

Collaboration


Dive into the Kevin R. Sowers's collaboration.

Top Co-Authors

Avatar

Harold D. May

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Joy E. M. Watts

University of Maryland Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar

James G. Ferry

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qingzhong Wu

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Upal Ghosh

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Charles E. Milliken

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge