Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin Shoulars is active.

Publication


Featured researches published by Kevin Shoulars.


Environmental Health Perspectives | 2005

Leukotoxin Diols from Ground Corncob Bedding Disrupt Estrous Cyclicity in Rats and Stimulate MCF-7 Breast Cancer Cell Proliferation

Barry M. Markaverich; Jan R. Crowley; Mary Alejandro; Kevin Shoulars; Nancy Casajuna; Shaila K. Mani; Andrea Reyna; John Sharp

Previous studies in our laboratory demonstrated that high-performance liquid chromatography (HPLC) analysis of ground corncob bedding extracts characterized two components (peak I and peak II) that disrupted endocrine function in male and female rats and stimulated breast and prostate cancer cell proliferation in vitro and in vivo. The active substances in peak I were identified as an isomeric mixture of 9,12-oxy-10,13-dihydroxyoctadecanoic acid and 10,13-oxy-9,12-dihydroxyoctadecanoic acid, collectively designated tetrahydrofurandiols (THF-diols). Studies presented here describe the purification and identification of the HPLC peak II component as 9,10-dihydroxy-12-octadecenoic acid (leukotoxin diol; LTX-diol), a well-known leukotoxin. A synthetic mixture of LTX-diol and 12,13-dihydroxy-9-octadecenoic acid (isoleukotoxin diol; i-LTX-diol) isomers was separated by HPLC, and each isomer stimulated (p < 0.001) MCF-7 cell proliferation in an equivalent fashion. The LTX-diol isomers failed to compete for [3H]estradiol binding to the estrogen receptor or nuclear type II sites, even though oral administration of very low doses of these compounds (>> 0.8 mg/kg body weight/day) disrupted estrous cyclicity in female rats. The LTX-diols did not disrupt male sexual behavior, suggesting that sex differences exist in response to these endocrine-disruptive agents.


The Journal of Steroid Biochemistry and Molecular Biology | 2010

Luteolin and gefitinib regulation of EGF signaling pathway and cell cycle pathway genes in PC-3 human prostate cancer cells

Barry M. Markaverich; Mary Vijjeswarapu; Kevin Shoulars; Mary Ann Rodriguez

cRNA microarray and real-time PCR (qPCR) studies from our lab identified five Cell Cycle Pathway (CCP) genes (CCNA2, CCNE2, CDC25A, CDKN1B, and PLK-1) as targets for luteolin in PC-3 prostate cancer cells [Shoulars et al., J. Steroid Biochem. Mol. Biol. 118 (2010) 41-50]. In this paper, Ingenuity Pathway Analysis of the microarray data identified 7 luteolin-regulated genes (EGFR, c-Fos, SOS, GRB2, JNK1, MKK4 and RasGAP) in the Epidermal Growth Factor Signaling Pathway (EGFSP) potentially involved in luteolin regulation of CCP genes and cell proliferation. To address these possibilities, we compared the response profiles (RNA and protein) of these EGFSP and CCP genes to luteolin and gefitinib by real-time PCR (qPCR) and Western blot analyses. Luteolin and gefitinib are known antagonists of EGFR-associated tyrosine protein kinase. Thus, the response profiles of EGFR regulated EGFSP or CCP genes should be very similar if genes in both pathways are controlled through this common mechanism of action. Treatment of PC-3 cell with luteolin for 24h caused a 4-fold stimulation of c-Fos gene expression, significant inhibition (p<0.001) of the CCP genes and G2/M arrest. Treatment of PC-3 cells with gefitinib also inhibited most of the CCP genes in a fashion similar to that of luteolin, however, the EGFR antagonist inhibited c-Fos gene expression, stimulated CDKN1B (p27) and arrested the cells in G0/G1. Thus, although the response patterns of most of the CCP genes to luteolin or gefitinib were similar, the effects of the two compounds on EGFSP gene expression and cell cycle arrest were clearly different. Combination studies revealed that the response of EGFSP genes to luteolin was not affected by gefitinib, even though the two compounds were additive with respect to their abilities to inhibit CCNA2, CCNE2, CDC25A and PCNA. These findings suggest that luteolin and gefitinib regulate CCP gene expression through a common mechanism involving EGFR-associated tyrosine kinase. Conversely, luteolin regulates PC-3 cell proliferation through an EGFR-tyrosine kinase independent mechanism(s), likely involving the epigenetic control of gene EGFSP gene expression through histone H4 binding interactions resulting in the upregulation of c-Fos and p21 gene expression.


Steroids | 2001

Purification and characterization of nuclear type II [3H]estradiol binding sites from the rat uterus: Covalent labeling with [3H]luteolin

Barry M. Markaverich; Kevin Shoulars; Mary Alejandro; Trellis Brown

Abstract Type II [3H]estradiol binding sites play an important role in normal and malignant cell growth and proliferation and the delineation of the precise function of the type II site in cell growth has been hampered by the inability to purify, sequence and or clone this protein. The present manuscript describes methodology for the solubilization, purification and tentative identification of type II sites from the estrogen-treated rat uterus. This protein(s) chromatographs as a single major peak on DNA-cellulose, Affigel Blue dye affinity resin and during high performance liquid chromatography (HPLC) on hydroxyapatite. The purified fractions from these columns elicited classical [3H]estradiol binding characteristics (sigmoidal saturation curve, hyperbolic Scatchard plot, and Hill coefficient of ∼4) for type II sites that are typically observed in crude or highly purified nuclear fractions or extracts. The type II binding activity also eluted as a single major component from a ligand affinity resin (GT-18-Sepharose) prepared by coupling 2,6-bis((3-methoxy-4-hydroxyphenyl)methylene)-cyclohexanone to epoxy-activated Sepharose (Pharmacia). The molecular weight of the type II site ([3H]estradiol binding activity) under non-denaturing or denaturing conditions was estimated to be approximately 10–15 kDa by gel filtration HPLC. Similarly, nuclear type II sites covalently labeled with the bioflavonoid, [3H]luteolin, migrated in the 10 kDa range on SDS PAGE. Thus, under these various experimental conditions, nuclear type II sites detected by [3H]estradiol or [3H]luteolin labeling techniques displayed little heterogeneity and appear much smaller than ERα or ERβ or other steroid hormone receptors.


The Journal of Steroid Biochemistry and Molecular Biology | 2005

Nuclear type II [3H]estradiol binding sites: A histone H3–H4 complex

Kevin Shoulars; Mary Ann Rodrigues; Jan R. Crowley; John Turk; Trellis Thompson; Barry M. Markaverich

[(3)H]luteolin covalently labels two forms (11kDa and 35kDa proteins) of type II binding sites in rat uterine nuclear extracts [K. Shoulars, T. Brown, M. Alejandro, J. Crowley, B. Markaverich, Identification of rat uterine nuclear type II [(3)H]estradiol binding sites as histone H4, Biochem. Biophys. Res. Commun. 296 (2002) 1083-1090]. The 11kDa protein was identified as histone H4. Levels of the 35kDa protein were insufficient for sequencing; however, this protein was recognized by anti-histone H4 antibodies. Histones H3 and H4 exist as dimers in vivo (mw>>35kDa) and we suspected the 35kDa [(3)H]luteolin-labeled protein in uterine nuclear extracts might be a complex of histones H3 and H4. This manuscript describes methods for the purification of commercially available calf thymus core histones that retain [(3)H]luteolin binding activity and are of sufficient purity for recombination studies. Mixing experiments with pure H3 and H4 from calf thymus demonstrate that a 35kDa H3-H4 dimer capable of binding [(3)H]luteolin is generated and this protein appears equivalent to the 35kDa [(3)H]luteolin binding protein in rat uterine nuclear extracts. If this is the case, type II site ligands including MeHPLA, luteolin, and other bioflavonoids and phytoestrogens may control histone-dependent gene transcription and cellular proliferation via binding to and modulating core histone/nucleosome function.


Biochemical and Biophysical Research Communications | 2002

Identification of nuclear type II [3H]estradiol binding sites as histone H4

Kevin Shoulars; Trellis Brown; Mary Alejandro; Jan R. Crowley; Barry M. Markaverich

[3H]Luteolin binds covalently to uterine nuclear type II sites [B. Markaverich, K. Shoulars, M.A. Alejandro, T. Brown, Steroids 66 (2001) 707] and was used to identify this protein(s). SDS-PAGE analyses of [3H]luteolin-labeled type II site preparations revealed specific binding to 11- and 35-kDa proteins. The 11-kDa protein was identified as histone H4 by amino acid sequencing. Western blotting confirmed that the 11- and 35-kDa proteins were acetylated forms of histone H4. Anti-histone H4 antibodies (but not H2A, H2B, or H3 antibodies) quantitatively immunoadsorbed type II binding sites from nuclear extracts. Binding analyses by [3H]estradiol exchange, using luteolin as a competitor, detected specific type II binding activity to histone H4 (but not histones H2A, H2B, or H3) generated in a rabbit reticulocyte lysate translation system and confirmed that histone H4 is the type II site.


Environmental Health Perspectives | 2007

Tetrahydrofurandiol Stimulation of Phospholipase A2, Lipoxygenase, and Cyclooxygenase Gene Expression and MCF-7 Human Breast Cancer Cell Proliferation

Barry M. Markaverich; Jan R. Crowley; Mary Rodriquez; Kevin Shoulars; Trellis Thompson

Background We characterized an endocrine disruptor from ground corncob bedding material that interferes with male and female sexual behavior and ovarian cyclicity in rats and stimulates estrogen receptor (ER)-positive and ER-negative breast cancer cell proliferation. The agents were identified as an isomeric mixture of tetrahydrofurandiols (THF-diols; 9,12-oxy-10,13-dihydroxy-octadecanoic acid and 10,13-oxy-9,12-dihydroxyoctadecanoic acid). Synthetic THF-diols inhibited rat male and female sexual behavior at oral concentrations of 0.5–1 ppm, and stimulated MCF-7 human breast cancer cell proliferation in vitro. Objectives Because THF-diols are derived from lipoxygenase and cyclooxygenase pathways, we suspected that these compounds may regulate cell proliferation by modulating specific enzymatic sites involved in linoleic acid metabolism including phospholipase A2 (PLA2), lipoxygenases (LOX-5 and LOX-12), cyclooxygenases (COX-1 and COX-2), and closely coupled enzymes including aromatase (AROM). Methods MCF-7 human breast cancer cells were treated with inhibitors for PLA2 (quinacrine), lipoxygenases (LOX-5 and LOX-12; baicalein, REV-5091, nordihydroguaiaretic acid), cyclooxygenases (COX-1, COX-2, indomethacin), and AROM (formestane). The effects of these enzyme inhibitors on cell proliferation in response to THF-diols or estradiol (E2) were assessed. THF-diol modulation of the expression (RNA and protein) of these enzymes was also evaluated by quantitative real-time PCR (QPCR) and Western blot analyses. Results The enzyme inhibition and gene expression (RNA and protein) studies identified PLA2, LOX-5, LOX-12, COX-2, and perhaps AROM as likely sites of THF-diol regulation in MCF-7 cells. COX-1 was not affected by THF-diol treatment. Discussion THF-diol stimulation of MCF-7 cell proliferation is mediated through effects on the expression of the PLA2, COX-2, LOX-5, and LOX-12 genes and/or their respective enzyme activities. The products of these enzymes, including prostaglandins, hydroxyeicosatetraenoic acids (HETEs) and hydroxyoctadecenoic acids (HODEs), are well-established mitogens in normal and malignant cells. Therefore, it is likely that these compounds are involved in the mechanism of action of THF-diols in breast cancer cells. Although the formestane inhibition studies suggested that AROM activity might be modulated by THF-diols, this was not confirmed by the gene expression studies.


The Journal of Steroid Biochemistry and Molecular Biology | 2010

Regulation of cell cycle and RNA transcription genes identified by microarray analysis of PC-3 human prostate cancer cells treated with luteolin.

Kevin Shoulars; Mary Ann Rodriguez; Trellis Thompson; Barry M. Markaverich

Prostate cancer is the second leading cause of cancer-related deaths in men in the United States. Our previous studies have shown that ligands for the nuclear type II [(3)H]estradiol binding site such as luteolin significantly inhibit prostate cancer cells in vitro and in vivo; however, the role of these ligands in cell growth and proliferation is poorly understood. In order to further elucidate the molecular mechanism through which luteolin exerts its effects on PC-3 cells, cRNA microarray analyses was performed on 38,500 genes to determine the genes altered by luteolin treatment. The expression of 3331 genes was changed greater than 1.2-fold after luteolin treatment. Analysis of the altered genes identified two pathways that were significantly affected by luteolin. The Cell Cycle Pathway contained 22 down-regulated genes (including polo-like kinase 1, cyclin A2, cyclin E2 and proliferation cell nuclear antigen) and one up-regulated gene (cyclin-dependent kinase inhibitor 1B). In addition, 13 genes were down-regulated by luteolin in the RNA Transcription Pathway. Real-time polymerase chain reactions and western blots verified the observations from the microarray. In addition, two synthetic, chemically distinct type II ligands, ZN-2 and BMHPC, mimicked the effects of luteolin on gene expression at the mRNA and protein level in PC-3 cells. Finally, chromatin immunoprecipitation assays indicated that luteolin exerts its effects on genes by altering the acetylation state of promoter-associated histones. Taken together, the data suggest that type II ligands inhibit cell growth and proliferation through epigenetic control of key genes involved in cell cycle progression and RNA transcription.


Steroids | 2006

Nuclear type II [3H]estradiol binding site ligands: inhibition of ER-positive and ER-negative cell proliferation and c-Myc and cyclin D1 gene expression

Barry M. Markaverich; Kevin Shoulars; Mary-Ann Alejandro

These studies assessed the effects of 3,4-dihydroxybenzalacetone (ZN-1) and 1-(3,4-dihydroxyphenyl)-2-propanol (ZN-2) on MCF-7 cell proliferation. The compounds blocked [3H]estradiol binding to nuclear type II sites, but did not compete for [3H]estradiol binding to recombinant ERalpha or ERbeta. ZN-1 and ZN-2 inhibited the proliferation of ERalpha and ERbeta positive (MCF-7) and negative (MCF-10A) breast cells, further ruling out direct binding to ER in the mechanism of action of these compounds. Pre-loading type II sites with ZN-1 or ZN-2 reduced [3H]estradiol exchange, strongly suggesting the drugs were binding covalently. ZN-1 treatment resulted in complete occupancy of type II sites and sustained (9 days) inhibition of MCF-7 cell proliferation following its removal from the tissue culture medium. This cell growth inhibition was not due to non-specific toxicity, as the numbers of viable, attached cells per dish (determined by trypan blue dye exclusion) remained constant throughout this 9-day period and eventually reversed by day 19. ZN-2 effects on cell proliferation reversed more rapidly following discontinuation of treatment, a response consistent with the inability of the compound to totally block type II binding. Both ZN-1 and ZN-2 blocked estradiol stimulation of c-Myc and cyclin D1 gene expression in MCF-7 cells, two events that are clearly coupled to cell cycle progression. We suspect this may occur through ZN-1 or ZN-2 modification of nucleosome function and/or chromatin remodeling since nuclear type II sites are localized to a complex of histones H3 and H4 (Shoulars et. al, J Steroid Biochem. Mol. Biol. 96: 19-30, 2005).


Cancer Letters | 2008

Regulation of the Nitric Oxide Pathway Genes by Tetrahydrofurandiols: Microarray Analysis of MCF-7 Human Breast Cancer Cells

Kevin Shoulars; Mary Ann Rodriguez; Trellis Thompson; John Turk; Jan R. Crowley; Barry M. Markaverich

THF-diols (9,12-oxy-10,13-dihydroxyoctadecanoic and 10,13-oxy-9,12-dihydroxyoctadecanoic acids) are endocrine disrupters in rats and mitogens in breast cancer cells. Microarray analyses and real-time PCR analyses on RNA from THF-treated MCF-7 cells revealed a number of genes (caveolin 1, heat shock protein 90 alpha and 90 beta, vascular endothelial growth factor, ATPase, Ca++ transporting, ubiquitous) in the nitric oxide pathway (NOP) were targets for THF-diols. Chromatin immunoprecipitation studies suggest THF-diols modify of histone H4 acetylation at the caveolin 1 promoter via an epigenetic mechanism. These findings are consistent with the well-known involvement of NOP genes in cell proliferation and sexual behavior.


International journal of biomedical science : IJBS | 2011

Luteolin Regulation of Estrogen Signaling and Cell Cycle Pathway Genes in MCF-7 Human Breast Cancer Cells

Barry M. Markaverich; Kevin Shoulars; Mary Ann Rodriguez

Collaboration


Dive into the Kevin Shoulars's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan R. Crowley

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trellis Thompson

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

John Turk

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Mary Alejandro

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Trellis Brown

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Andrea Reyna

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary Vijjeswarapu

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge