Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin T. Yang is active.

Publication


Featured researches published by Kevin T. Yang.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Soluble (pro)renin receptor via β-catenin enhances urine concentration capability as a target of liver X receptor

Xiaohan Lu; Fei Wang; Chuanming Xu; Sunny Soodvilai; Kexin Peng; Jiahui Su; Long Zhao; Kevin T. Yang; Yumei Feng; Shu-Feng Zhou; Jan Åke Gustafsson; Tianxin Yang

Significance The soluble (pro)renin receptor (sPRR) is produced by protease-mediated cleavage of PRR and is elevated under certain pathological conditions. To our knowledge, no prior studies have reported the biological function of sPRR in general or the antidiuretic function of the soluble protein in particular. Here we describe a previously unreported role of sPRR in the enhancement of renal aquaporin 2 (AQP2) expression and urine-concentrating capability. We further show that sPRR acts via frizzled class receptor 8-depdendent β-catenin signaling to increase AQP2 expression in the collecting duct cells. These findings offer an unreported insight into the physiological role of sPRR in regulating fluid homeostasis. In addition, we found that liver X receptor activation by TO901317 resulted in diabetes insipidus because of the inhibition of renal PRR expression. The extracellular domain of the (pro)renin receptor (PRR) is cleaved to produce a soluble (pro)renin receptor (sPRR) that is detected in biological fluid and elevated under certain pathological conditions. The present study was performed to define the antidiuretic action of sPRR and its potential interaction with liver X receptors (LXRs), which are known regulators of urine-concentrating capability. Water deprivation consistently elevated urinary sPRR excretion in mice and humans. A template-based algorithm for protein–protein interaction predicted the interaction between sPRR and frizzled-8 (FZD8), which subsequently was confirmed by coimmunoprecipitation. A recombinant histidine-tagged sPRR (sPRR-His) in the nanomolar range induced a remarkable increase in the abundance of renal aquaporin 2 (AQP2) protein in primary rat inner medullary collecting duct cells. The AQP2 up-regulation relied on sequential activation of FZD8-dependent β-catenin signaling and cAMP–PKA pathways. Inhibition of FZD8 or tankyrase in rats induced polyuria, polydipsia, and hyperosmotic urine. Administration of sPRR-His alleviated the symptoms of diabetes insipidus induced in mice by vasopressin 2 receptor antagonism. Administration of the LXR agonist TO901317 to C57/BL6 mice induced polyuria and suppressed renal AQP2 expression associated with reduced renal PRR expression and urinary sPRR excretion. Administration of sPRR-His reversed most of the effects of TO901317. In cultured collecting duct cells, TO901317 suppressed PRR protein expression, sPRR release, and PRR transcriptional activity. Overall we demonstrate, for the first time to our knowledge, that sPRR exerts antidiuretic action via FZD8-dependent stimulation of AQP2 expression and that inhibition of this pathway contributes to the pathogenesis of diabetes insipidus induced by LXR agonism.


American Journal of Physiology-renal Physiology | 2016

Activation of ENaC in collecting duct cells by prorenin and its receptor PRR: Involvement of Nox4-derived hydrogen peroxide

Xiaohan Lu; Fei Wang; Mi Liu; Kevin T. Yang; Adam Nau; Donald E. Kohan; Van Reese; Russell S. Richardson; Tianxin Yang

The collecting duct (CD) has been recognized as an important source of prorenin/renin, and it also expresses (pro)renin receptor (PRR). The goal of this study was to examine the hypothesis that prorenin or renin via PRR regulates epithelial Na(+) channel (ENaC) activity in mpkCCD cells. Transepithelial Na(+) transport was measured by using a conventional epithelial volt-ohmmeter and was expressed as the calculated equivalent current (Ieq). Amiloride-inhibitable Ieq was used as a reflection of ENaC activity. Administration of prorenin in the nanomolar range induced a significant increase in Ieq that was detectable as early as 1 min, peaked at 5 min, and gradually returned to baseline within 15 min. These changes in Ieq were completely prevented by a newly developed PRR decoy inhibitor, PRO20. Prorenin-induced Ieq was inhibitable by amiloride. Compared with prorenin, renin was less effective in stimulating Ieq Prorenin-induced Ieq was attenuated by apocynin but enhanced by tempol, the latter effect being prevented by catalase. In response to prorenin treatment, the levels of total reactive oxygen species and H2O2 were both increased, as detected by spin-trap analysis and reactive oxygen species (ROS)-Glo H2O2 assay, respectively. Both siRNA-mediated Nox4 knockdown and the dual Nox1/4 inhibitor GKT137892 attenuated prorenin-induced Ieq Overall, our results demonstrate that activation of PRR by prorenin stimulates ENaC activity in CD cells via Nox4-derived H2O2.


Journal of The American Society of Nephrology | 2016

Antidiuretic Action of Collecting Duct (Pro)Renin Receptor Downstream of Vasopressin and PGE2 Receptor EP4

Fei Wang; Xiaohan Lu; Kexin Peng; Hui Fang; Li Zhou; Jiahui Su; Adam Nau; Kevin T. Yang; Atsuhiro Ichihara; Aihua Lu; Shu-Feng Zhou; Tianxin Yang

Within the kidney, the (pro)renin receptor (PRR) is predominantly expressed in the collecting duct (CD), particularly in intercalated cells, and it is regulated by the PGE2 receptor EP4 Notably, EP4 also controls urinary concentration through regulation of aquaporin 2 (AQP2). Here, we tested the hypothesis that sequential activation of EP4 and PRR determines AQP2 expression in the CD, thus mediating the antidiuretic action of vasopressin (AVP). Water deprivation (WD) elevated renal PRR expression and urinary soluble PRR excretion in rats. Intrarenal infusion of a PRR decoy peptide, PRO20, or an EP4 antagonist partially prevented the decrease in urine volume and the increase in urine osmolality and AQP2 expression induced by 48-hour WD. In primary cultures of rat inner medullary CD cells, AQP2 expression induced by AVP treatment for 24 hours depended on sequential activation of the EP4 receptor and PRR. Additionally, mice lacking PRR in the CD exhibited increased urine volume and decreased urine osmolality under basal conditions and impaired urine concentrating capability accompanied by severe volume loss and a dangerous level of plasma hyperosmolality after WD. Together, these results suggest a previously undescribed linear AVP/PGE2/EP4/PRR pathway in the CD for regulation of AQP2 expression and urine concentrating capability.


American Journal of Physiology-renal Physiology | 2013

Increased susceptibility of db/db mice to rosiglitazone-induced plasma volume expansion: Role of dysregulation of renal water transporters

Li Zhou; Gang Liu; Zhanjun Jia; Kevin T. Yang; Ying Sun; Yutaka Kakizoe; Mi Liu; Shu Feng Zhou; Ren Chen; Baoxue Yang; Tianxin Yang

Thiazolidinediones (TZDs), which are synthetic peroxisome proliferator-activated receptor subtype-γ (PPARγ), agonists are highly effective for treatment of type 2 diabetes. However, the side effect of fluid retention has significantly limited their application. Most of the previous studies addressing TZD-induced fluid retention employed healthy animals. The underlying mechanism of this phenomenon is still incompletely understood, particularly in the setting of disease state. The present study was undertaken to examine rosiglitazone (RGZ)-induced fluid retention in db/db mice and to further investigate the underlying mechanism. In response to RGZ treatment, db/db mice exhibited an accelerated plasma volume expansion as assessed by hematocrit (Hct) and fluorescent nanoparticles, in parallel with a greater increase in body weight, compared with lean controls. In response to RGZ-induced fluid retention, urinary Na(+) excretion and urine volume were significantly increased in lean mice. In contrast, the natriuretic and diuretic responses were significantly blunted in db/db mice. RGZ db/db mice exhibited a parallel decrease in plasma Na(+) concentration and plasma osmolality, contrasting to unchanged levels in lean controls. Imunoblotting analysis showed downregulation of renal aquaporin (AQP) 2 expression in response to RGZ treatment in lean mice but not in db/db mice. Renal AQP3 protein expression was unaffected by RGZ treatment in lean mice but was elevated in db/db mice. In contrast, the expression of Na(+)/H(+) exchanger-3 (NHE3) and NKCC2 was unchanged in either mouse strain. Together these results suggest that compared with the lean controls, db/db mice exhibited accelerated plasma volume expansion that was in part due to the inappropriate response of renal water transporters.


Journal of Hepatology | 2014

mPGES-2 deletion remarkably enhances liver injury in streptozotocin-treated mice via induction of GLUT2

Ying Sun; Zhanjun Jia; Guangrui Yang; Yutaka Kakizoe; Mi Liu; Kevin T. Yang; Ying Liu; Baoxue Yang; Tianxin Yang

BACKGROUND & AIMS Microsomal prostaglandin E synthase-2 (mPGES-2) deletion does not influence in vivo PGE2 production and the function of this enzyme remains elusive. The present study was undertaken to investigate the role of mPGES-2 in streptozotocin (STZ)-induced type-1 diabetes and organ injuries. METHODS mPGES-2 wild type (WT) and knockout (KO) mice were treated by a single intraperitoneal injection of STZ at the dose of 120 mg/kg to induce type-1 diabetes. Subsequently, glycemic status and organ injuries were evaluated. RESULTS Following 4 days of STZ administration, mPGES-2 KO mice exhibited severe lethality in contrast to the normal phenotype observed in WT control mice. In a separate experiment, the analysis was performed at day 3 of the STZ treatment in order to avoid lethality. Blood glucose levels were similar between STZ-treated KO and WT mice. However, the livers of KO mice were yellowish with severe global hepatic steatosis, in parallel with markedly elevated liver enzymes and remarkable stomach expansion. However, the morphology of the other organs was largely normal. The STZ-treated KO mice displayed extensive hepatocyte apoptosis compared with WT mice in parallel with markedly enhanced inflammation and oxidative stress. More interestingly, a liver-specific 50% upregulation of GLUT2 was found in the KO mice accompanied with a markedly enhanced STZ accumulation and this induction of GLUT2 was likely to be associated with the insulin/SREBP-1c pathway. Primary cultured hepatocytes of KO mice exhibited an increased sensitivity to STZ-induced injury and higher cellular STZ content, which was markedly blunted by the selective GLUT2 inhibitor phloretin. CONCLUSIONS mPGES-2 deletion enhanced STZ-induced liver toxicity possibly via GLUT2-mediated STZ uptake, independently of diabetes mellitus.


Physiological Reports | 2017

The soluble (Pro) renin receptor does not influence lithium-induced diabetes insipidus but does provoke beiging of white adipose tissue in mice.

Kevin T. Yang; Fei Wang; Xiaohan Lu; Kexin Peng; Tianxin Yang; J. David Symons

Earlier we reported that the recombinant soluble (pro) renin receptor sPRR‐His upregulates renal aquoporin‐2 (AQP2) expression, and attenuates polyuria associated with nephrogenic diabetes insipidus (NDI) induced by vasopressin type 2 receptor (V2R) antagonism. Patients that receive lithium therapy develop polyuria associated NDI that might be secondary to downregulation of renal AQP2. We hypothesized that sPRR‐His attenuates indices of NDI associated with lithium treatment. Eight‐week‐old male C57/BL6 mice consumed chow supplemented with LiCl (40 mmol/kg diets) for 14 days. For the last 7 days mice received either sPRR‐His [30 μg/(kg day), i.v.; sPRR] or vehicle (Veh) via minipump. Control (Con) mice consumed standard chow for 14 days. Compared to Con mice, 14‐d LiCl treatment elevated water intake and urine volume, and decreased urine osmolality, regardless of sPRR‐His or Veh administration. These data indicate that sPRR‐His treatment does not attenuate indices of NDI evoked by lithium. Unexpectedly, epididymal fat mass was lower, adipocyte UCP1 mRNA and protein expression were higher, and multilocular lipid morphology was enhanced, in LiCl‐fed mice treated with sPRR‐His versus vehicle. The beiging of white adipose tissue is a novel metabolic benefit of manipulating the sPRR in the context of lithium‐induced NDI.


American Journal of Physiology-renal Physiology | 2018

Soluble (Pro)Renin Receptor as a Potential Therapy for Diabetes Insipidus

Kevin T. Yang; Tianxin Yang; J. David Symons

The antidiuretic hormone vasopressin (VP) is produced by the hypothalamus and is stored and secreted from the posterior pituitary. VP acts via VP type 2 receptors (V2Rs) on the basolateral membrane of principal cells of the collecting duct (CD) to regulate fluid permeability. The VP-evoked endocrine pathway is essential in determining urine concentrating capability. For example, a defect in any component of the VP signaling pathway can result in polyuria, polydipsia, and hypotonic urine, collectively termed diabetes insipidus (DI). A lack of VP production precipitates central diabetes insipidus (CDI), which can be managed effectively by VP supplementation. A majority of cases of nephrogenic diabetes insipidus (NDI) result from V2R mutations that impair receptor sensitivity. No specific therapy is currently available for management of NDI. Evidence is evolving that (pro)renin receptor (PRR), a newly identified member of the renin-angiotensin system, is capable of regulating VP production and action. As such, PRR should be considered strongly as a therapeutic target for treating CDI and NDI. The current review will summarize recent advances in understanding the physiology of renal and central PRR as it relates to the two types of DI.


UCUR 2017 | 2016

Exercise-training increases basal autophagy in endothelial cells of adult mice

Kevin T. Yang


Investigative Ophthalmology & Visual Science | 2016

Inhibition of Choroidal Neovascularization in Rap1b-/- Mice by Self complimentary-AAV2-delivered Constitutively Active Rap1a in Retinal Pigment Epithelium

Haibo Wang; Xiaokun Han; Sadiki Deane; Colin A. Bretz; Silke Becker; Angelina Jingtong Liu; Kevin T. Yang; M. Elizabeth Hartnett


Archive | 2015

Activation of ENaC in Collecting Duct Cells by Prorenin and Its Receptor PRR

Xiaohan Lu; Fei Wang; Mi Liu; Kevin T. Yang; Adam Nau; Donald E. Kohan; Van Reese; Russell S. Richardson; Tianxin Yang

Collaboration


Dive into the Kevin T. Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Wang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Xiaohan Lu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Mi Liu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Shu-Feng Zhou

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Kexin Peng

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge