Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin V. Lemley is active.

Publication


Featured researches published by Kevin V. Lemley.


American Journal of Physiology-renal Physiology | 2013

The podocyte's response to stress: the enigma of foot process effacement

Wilhelm Kriz; Isao Shirato; Michio Nagata; Michel LeHir; Kevin V. Lemley

Progressive loss of podocytes is the most frequent cause accounting for end-stage renal failure. Podocytes are complex, terminally differentiated cells incapable of replicating. Thus lost podocytes cannot be replaced by proliferation of neighboring undamaged cells. Moreover, podocytes occupy a unique position as epithelial cells, adhering to the glomerular basement membrane (GBM) only by their processes, whereas their cell bodies float within the filtrate in Bowmans space. This exposes podocytes to the danger of being lost by detachment as viable cells from the GBM. Indeed, podocytes are continually excreted as viable cells in the urine, and the rate of excretion dramatically increases in glomerular diseases. Given this situation, it is likely that evolution has developed particular mechanisms whereby podocytes resist cell detachment. Podocytes respond to stress and injury by undergoing tremendous changes in shape. Foot process effacement is the most prominent and, yet in some ways, the most enigmatic of those changes. This review summarizes the various structural responses of podocytes to injury, focusing on foot process effacement and detachment. We raise the hypothesis that foot process effacement represents a protective response of podocytes to escape detachment from the GBM.


PLOS ONE | 2010

Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis

Laura Perin; Sargis Sedrakyan; Stefano Giuliani; Stefano Da Sacco; Gianni Carraro; Liron Shiri; Kevin V. Lemley; Michael Rosol; Sam Wu; Anthony Atala; David Warburton; Roger E. De Filippo

Acute Tubular Necrosis (ATN) causes severe damage to the kidney epithelial tubular cells and is often associated with severe renal dysfunction. Stem-cell based therapies may provide alternative approaches to treating of ATN. We have previously shown that clonal c-kitpos stem cells, derived from human amniotic fluid (hAFSC) can be induced to a renal fate in an ex-vivo system. Herein, we show for the first time the successful therapeutic application of hAFSC in a mouse model with glycerol-induced rhabdomyolysis and ATN. When injected into the damaged kidney, luciferase-labeled hAFSC can be tracked using bioluminescence. Moreover, we show that hAFSC provide a protective effect, ameliorating ATN in the acute injury phase as reflected by decreased creatinine and BUN blood levels and by a decrease in the number of damaged tubules and apoptosis therein, as well as by promoting proliferation of tubular epithelial cells. We show significant immunomodulatory effects of hAFSC, over the course of ATN. We therefore speculate that AFSC could represent a novel source of stem cells that may function to modulate the kidney immune milieu in renal failure caused by ATN.


Kidney International | 2012

Podocyte detachment and reduced glomerular capillary endothelial fenestration promote kidney disease in type 2 diabetic nephropathy

E. Jennifer Weil; Kevin V. Lemley; Clinton C. Mason; Berne Yee; Lois I. Jones; Kristina Blouch; Tracy Lovato; Meghan Richardson; Bryan D. Myers; Robert G. Nelson

Podocyte detachment and reduced endothelial cell fenestration and relationships between these features and the classic structural changes of diabetic nephropathy have not been described in patients with type 2 diabetes. Here we studied these relationships in 37 Pima Indians with type 2 diabetes of whom 11 had normal albuminuria, 16 had microalbuminuria, and 10 had macroalbuminuria. Biopsies from ten kidney donors (not Americans Indians) showed almost undetectable (0.03%) podocyte detachment and 43.5% endothelial cell fenestration. In patients with type 2 diabetes, by comparison, the mean percentage of podocyte detachment was significantly higher in macroalbuminuria (1.48%) than in normal albuminuria (0.41%) or microalbuminuria (0.37%). Podocyte detachment correlated significantly with podocyte number per glomerulus and albuminuria. The mean percentage of endothelial cell fenestration was significantly lower in macroalbuminuria (19.3%) than in normal (27.4%) or microalbuminuria (27.2%) and correlated significantly with glomerular basement membrane thickness, albuminuria, fractional mesangial area, and the glomerular filtration rate (iothalamate clearance). Podocyte detachment and diminished endothelial cell fenestration were not correlated, but were related to classic lesions of diabetic nephropathy. Thus, our findings confirm the important role these injuries play in the development and progression of kidney disease in type 2 diabetes, just as they do in type 1 diabetes. Whether podocyte detachment creates conduits for proteins to escape the glomerular circulation and reduced endothelial fenestration lowers glomerular hydraulic permeability requires further study.


Kidney International | 2013

Design of the nephrotic syndrome study network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach

Crystal A. Gadegbeku; Debbie S. Gipson; Lawrence B. Holzman; Akinlolu Ojo; Peter X.-K. Song; Laura Barisoni; Matthew G. Sampson; Jeffrey B. Kopp; Kevin V. Lemley; Peter J. Nelson; Chrysta C. Lienczewski; Sharon G. Adler; Gerald B. Appel; Daniel C. Cattran; Michael J. Choi; Gabriel Contreras; Katherine M. Dell; Fernando C. Fervenza; Keisha L. Gibson; Larry A. Greenbaum; Joel D. Hernandez; Stephen M. Hewitt; Sangeeta Hingorani; Michelle A. Hladunewich; Marie C. Hogan; Susan L. Hogan; Frederick J. Kaskel; John C. Lieske; Kevin E.C. Meyers; Patrick H. Nachman

The Nephrotic Syndrome Study Network (NEPTUNE) is a North American multi-center collaborative consortium established to develop a translational research infrastructure for Nephrotic Syndrome. This includes a longitudinal observational cohort study, a pilot and ancillary studies program, a training program, and a patient contact registry. NEPTUNE will enroll 450 adults and children with minimal change disease, focal segmental glomerulosclerosis and membranous nephropathy for detailed clinical, histopathologic, and molecular phenotyping at the time of clinically-indicated renal biopsy. Initial visits will include an extensive clinical history, physical examination, collection of urine, blood and renal tissue samples, and assessments of quality of life and patient-reported outcomes. Follow-up history, physical measures, urine and blood samples, and questionnaires will be obtained every 4 months in the first year and bi-annually, thereafter. Molecular profiles and gene expression data will be linked to phenotypic, genetic, and digitalized histologic data for comprehensive analyses using systems biology approaches. Analytical strategies were designed to transform descriptive information to mechanistic disease classification for Nephrotic Syndrome and to identify clinical, histological, and genomic disease predictors. Thus, understanding the complexity of the disease pathogenesis will guide further investigation for targeted therapeutic strategies.


Transplantation | 1998

Successful transplantation of adult-sized kidneys into infants requires maintenance of high aortic blood flow.

Oscar Salvatierra; Tej M. Singh; Roger Y. Shifrin; Susan Conley; Steven R. Alexander; Diana C. Tanney; Kevin V. Lemley; Minnie M. Sarwal; Fiona E. Mackie; Edward J. Alfrey; Pamela Orlandi; Christopher K. Zarins; Robert J. Herfkens

BACKGROUND Nationally, results of renal transplantation in infants are inferior to those in older children and adults. Within the infant group, best results are obtained with adult-sized kidneys (ASKs) rather than size-compatible pediatric kidneys. However, transplantation of ASKs into infants has an increased risk of acute tubular necrosis and graft loss from vascular thrombosis and primary nonfunction. The aim of this study was to define and understand the hemodynamic changes induced by ASK transplantation, so that outcomes of transplantation in infants can be improved. METHODS Nine hemodynamically stable and optimally hydrated infants were studied under a controlled sedation with cine phase-contrast magnetic resonance at three time periods: before transplantation, 8-12 days after transplantation, and 4-6 months after transplantation. Cross-sectional images of both the infant aorta and the adult transplant renal artery were obtained and blood flow was quantitated. Renal volumes were also obtained, and expected renal artery blood flow based on early posttransplant volume was calculated. In addition, renal artery blood flow was determined in 10 in situ native adult kidneys prior to donor nephrectomy. Supplemental nasogastric or gastrostomy tube feeding was carried out during the blood flow study period to optimize intravascular volume. RESULTS Mean infant aortic blood flows were 331+/-148 ml/min before transplantation, 761+/-272 ml/ min at 8-12 days after transplantation (P=0.0006 with pretransplant flow), and 665+/-138 ml/min at 4-6 months after transplantation (P=0.0001 with pretransplant flow). Mean transplanted renal artery flows were 385+/-158 ml/min at 8-12 days and 296+/-113 ml/min at 4-6 months after transplantation. Transplanted renal artery flows were less than prenephrectomy in situ donor renal artery blood flow (618+/-130 ml/min; P=0.02 and P=0.0003) and expected normal renal artery blood flow (666+/-87 ml/min; P=0.003 and P=0.001) at both 8-12 days and 4-6 months after transplantation. A 26% reduction in renal volume (P=0.003) occurred between the two postoperative time periods, and this paralleled the decrease in posttransplant renal artery flow. One-year graft and patient survival in the nine infants was 100%. The mean serum creatinine levels at 3, 6, and 12 months were 0.43+/-0.10, 0.48+/-0.15, and 0.49+/-0.16 mg/dl. CONCLUSIONS This study is the first to quantitatively document the blood flow changes occurring after ASK transplantation in infants. There was a greater than two-fold increase in aortic blood flow after ASK transplantation, and this increase was sustained for at least 4 months and appeared to be driven by the blood flow demand of the ASK. However, actual posttransplant renal artery blood flow was significantly less than normal renal artery flow. Our study suggests that aggressive intravascular volume maintenance may be necessary to achieve and maintain optimum aortic blood flow, so as not to further compromise posttransplant renal artery flow and to avoid low-flow states that could induce acute tubular necrosis, vascular thrombosis, or primary nonfunction.


Journal of The American Society of Nephrology | 2015

A Potential Role for Mechanical Forces in the Detachment of Podocytes and the Progression of CKD

Wilhelm Kriz; Kevin V. Lemley

Loss of podocytes underlies progression of CKD. Detachment of podocytes from the glomerular basement membrane (GBM) rather than apoptosis or necrosis seems to be the major mechanism of podocyte loss. Such detachment of viable podocytes may be caused by increased mechanical distending and shear forces and/or impaired adhesion to the GBM. This review considers the mechanical challenges that may lead to podocyte loss by detachment from the GBM under physiologic and pathophysiologic conditions, including glomerular hypertension, hyperfiltration, hypertrophy, and outflow of filtrate from subpodocyte spaces. Furthermore, we detail the cellular mechanisms by which podocytes respond to these challenges, discuss the protective effects of angiotensin blockade, and note the questions that must be addressed to better understand the relationship between podocyte detachment and progression of CKD.


Journal of The American Society of Nephrology | 2009

The MIF Receptor CD74 in Diabetic Podocyte Injury

Maria Dolores Sanchez-Niño; Ana Belen Sanz; Pekka Ihalmo; Markus Lassila; Harry Holthöfer; Sergio Mezzano; Claudio Aros; Per-Henrik Groop; Moin A. Saleem; Peter W. Mathieson; Robert Langham; Matthias Kretzler; Viji Nair; Kevin V. Lemley; Robert G. Nelson; Eero Mervaala; Deborah Mattinzoli; Maria Pia Rastaldi; Marta Ruiz-Ortega; José Luis Martín-Ventura; Jesús Egido; Alberto Ortiz

Although metabolic derangement plays a central role in diabetic nephropathy, a better understanding of secondary mediators of injury may lead to new therapeutic strategies. Expression of macrophage migration inhibitory factor (MIF) is increased in experimental diabetic nephropathy, and increased tubulointerstitial mRNA expression of its receptor, CD74, has been observed in human diabetic nephropathy. Whether CD74 transduces MIF signals in podocytes, however, is unknown. Here, we found glomerular and tubulointerstitial CD74 mRNA expression to be increased in Pima Indians with type 2 diabetes and diabetic nephropathy. Immunohistochemistry confirmed the increased glomerular and tubular expression of CD74 in clinical and experimental diabetic nephropathy and localized glomerular CD74 to podocytes. In cultured human podocytes, CD74 was expressed at the cell surface, was upregulated by high concentrations of glucose and TNF-alpha, and was activated by MIF, leading to phosphorylation of extracellular signal-regulated kinase 1/2 and p38. High glucose also induced CD74 expression in a human proximal tubule cell line (HK2). In addition, MIF induced the expression of the inflammatory mediators TRAIL and monocyte chemoattractant protein 1 in podocytes and HK2 cells in a p38-dependent manner. These data suggest that CD74 acts as a receptor for MIF in podocytes and may play a role in the pathogenesis of diabetic nephropathy.


Kidney & Blood Pressure Research | 1996

A Frequent Pathway to Glomerulosclerosis: Deterioration of Tuft Architecture – Podocyte Damage – Segmental Sclerosis

Wilhelm Kriz; Matthias Kretzler; Michio Nagata; Abraham P. Provoost; Isvao Shirato; Sören Uiker; Tatsuo Sakai; Kevin V. Lemley

Lesions in glomerular architecture include mesangial expansion, capillary ballooning, capillary unfolding and microaneurysm formation. Such lesions appear to develop in response to mechanical overextension. A frequent pathway to segmental glomerulosclerosis starts from capillary ballooning and unfolding. Podocytes supporting those deranged capillaries are exposed to increased mechanical stress. This may lead to podocyte injury terminating in detachments from the GBM. Naked GBM areas at peripheral capillary loops allow the attachment of parietal cells to the GBM, i.e. the formation of a tuft adhesion to Bowmans capsule. An adhesion has a strong tendency to progress to segmental sclerosis.


Journal of The American Society of Nephrology | 2012

Injection of Amniotic Fluid Stem Cells Delays Progression of Renal Fibrosis

Sargis Sedrakyan; Stefano Da Sacco; Anna Milanesi; Liron Shiri; Astgik Petrosyan; Radka Varimezova; David Warburton; Kevin V. Lemley; Roger E. De Filippo; Laura Perin

Injection of amniotic fluid stem cells ameliorates the acute phase of acute tubular necrosis in animals by promoting proliferation of injured tubular cells and decreasing apoptosis, but whether these stem cells could be of benefit in CKD is unknown. Here, we used a mouse model of Alport syndrome, Col4a5(-/-) mice, to determine whether amniotic fluid stem cells could modify the course of progressive renal fibrosis. Intracardiac administration of amniotic fluid stem cells before the onset of proteinuria delayed interstitial fibrosis and progression of glomerular sclerosis, prolonged animal survival, and ameliorated the decline in kidney function. Treated animals exhibited decreased recruitment and activation of M1-type macrophages and a higher proportion of M2-type macrophages, which promote tissue remodeling. Amniotic fluid stem cells did not differentiate into podocyte-like cells and did not stimulate production of the collagen IVa5 needed for normal formation and function of the glomerular basement membrane. Instead, the mechanism of renal protection was probably the paracrine/endocrine modulation of both profibrotic cytokine expression and recruitment of macrophages to the interstitial space. Furthermore, injected mice retained a normal number of podocytes and had better integrity of the glomerular basement membrane compared with untreated Col4a5(-/-) mice. Inhibition of the renin-angiotensin system by amniotic fluid stem cells may contribute to these beneficial effects. In conclusion, treatment with amniotic fluid stem cells may be beneficial in kidney diseases characterized by progressive renal fibrosis.


Circulation Research | 1983

Direct determination of vasa recta blood flow in the rat renal papilla.

C. Holliger; Kevin V. Lemley; S. L. Schmitt; F C Thomas; Channing R. Robertson; Rex L. Jamison

Blood flow in vasa recta capillaries of the exposed renal papilla of young antidiuretic rats (n = 18) was determined by an adaptation of the video-photometric technique of Intaglietta. The erythrocyte velocity and capillary diameter in vasa recta (« = 97) were measured at the same location by means of fluorescence video microscopy, with fluorescein-labeled bovine 7-globulin as a plasma marker. A factor relating erythrocyte velocity to mean cross-sectional blood velocity was determined in vitro to permit the calculation of single vasa recta blood flows from the measured indices, erythrocyte velocity and capillary diameter. Mean blood flow in descending vasa recta was 8.83 ± 0.96 (SE) nl/min, significantly greater than that in ascending vasa recta, 4.82 ± 0.34 nl/min. The total numbers of ascending and descending vasa recta at the base of the exposed papilla were also determined. Over 1500 vasa recta were identified as ascending vasa recta or descending vasa recta in electron micrographs of three papillas. At this level in the papilla (2 mm from the tip), there were four ascending vasa recta for each descending vas rectum. From the total numbers of ascending vasa recta and descending vas rectum, single vessel blood flows were converted to total blood flow. Total blood outflow in all ascending vasa recta, 11.3 μl/min, substantially exceeded total blood inflow in all descending vasa recta, 5.2 μmin. The difference between outflow and inflow (6.1 μ1/min) represents an estimate of water uptake by the papillary microcirculation, and is more than adequate to accommodate the known rate of water reabsorption from the collecting ducts of the exposed papilla.

Collaboration


Dive into the Kevin V. Lemley's collaboration.

Top Co-Authors

Avatar

Robert G. Nelson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Jennifer Weil

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

William C. Knowler

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gudeta D. Fufaa

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Perin

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge