Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin Wickman is active.

Publication


Featured researches published by Kevin Wickman.


Neuron | 1998

Abnormal Heart Rate Regulation in GIRK4 Knockout Mice

Kevin Wickman; Jan Nemec; Sandra J. Gendler; David E. Clapham

Acetylcholine (ACh) released from the stimulated vagus nerve decreases heart rate via modulation of several types of ion channels expressed in cardiac pacemaker cells. Although the muscarinic-gated potassium channel I(KACh) has been implicated in vagally mediated heart rate regulation, questions concerning the extent of its contribution have remained unanswered. To assess the role of I(KACh) in heart rate regulation in vivo, we generated a mouse line deficient in I(KACh) by targeted disruption of the gene coding for GIRK4, one of the channel subunits. We analyzed heart rate and heart rate variability at rest and after pharmacological manipulation in unrestrained conscious mice using electrocardiogram (ECG) telemetry. We found that I(KACh) mediated approximately half of the negative chronotropic effects of vagal stimulation and adenosine on heart rate. In addition, this study indicates that I(KACh) is necessary for the fast fluctuations in heart rate responsible for beat-to-beat control of heart activity, both at rest and after vagal stimulation. Interestingly, noncholinergic systems also appear to modulate heart activity through I(KACh). Thus, I(KACh) is critical for effective heart rate regulation in mice.


Journal of the American College of Cardiology | 2001

Evaluation of the role of IKAChin atrial fibrillation using a mouse knockout model

Pramesh Kovoor; Kevin Wickman; Colin T. Maguire; William T. Pu; Josef Gehrmann; Charles I. Berul; David E. Clapham

OBJECTIVES We sought to study the role of I(KACh) in atrial fibrillation (AF) and the potential electrophysiologic effects of a specific I(KACh) antagonist. BACKGROUND I(KACh) mediates much of the cardiac responses to vagal stimulation. Vagal stimulation predisposes to AF, but the specific role of I(KACh) in the generation of AF and the electrophysiologic effects of specific I(KACh) blockade have not been studied. METHODS Adult wild-type (WT) and I(KACh)-deficient knockout (KO) mice were studied in the absence and presence of the muscarinic receptor agonist carbachol. The electrophysiologic features of KO mice were compared with those of WT mice to assess the potential effects of a specific I(KACh) antagonist. RESULTS Atrial fibrillation lasting for a mean of 5.7+/-11 min was initiated in 10 of 14 WT mice in the presence of carbachol, but not in the absence of carbachol. Atrial arrhythmia could not be induced in KO mice. Ventricular tachyarrhythmia could not be induced in either type of mouse. Sinus node recovery times after carbachol and sinus cycle lengths were shorter and ventricular effective refractory periods were greater in KO mice than in WT mice. There was no significant difference between KO and WT mice in AV node function. CONCLUSIONS Activation of I(KACh) predisposed to AF and lack of I(KACh) prevented AF. It is likely that I(KACh) plays a crucial role in the generation of AF in mice. Specific I(KACh) blockers might be useful for the treatment of AF without significant adverse effects on the atrioventricular node or the ventricles.


Neuron | 2004

Vesicular Dopamine Release Elicits an Inhibitory Postsynaptic Current in Midbrain Dopamine Neurons

Michael J. Beckstead; David K. Grandy; Kevin Wickman; John T. Williams

Synchronous activation of dopamine neurons, for instance upon presentation of an unexpected rewarding stimulus, results in the release of dopamine from both terminals in projection areas and somatodendritic sites within the ventral midbrain. This report describes an inhibitory postsynaptic current (IPSC) that was elicited by dopamine in slices from mouse midbrain. The IPSC was tetrodotoxin sensitive, calcium dependent, and blocked by a D2 receptor antagonist. Inhibition of monoamine transporters prolonged the IPSC, indicating that the time course of dopamine neurotransmission is tightly regulated by reuptake. Changing the stimulus intensity altered the amplitude but not the time course of the IPSC, whose onset was faster than could be reproduced with iontophoresis. The results indicate a rapid rise in dopamine concentration at the D2 receptors, suggesting that dopamine that is released by a train of action potentials acts in a localized area rather than in a manner consistent with volume transmission.


The Journal of Neuroscience | 2005

Molecular and Cellular Diversity of Neuronal G-Protein-Gated Potassium Channels

Lev Koyrakh; Rafael Luján; José Colón; Christine Karschin; Yoshihisa Kurachi; Andreas Karschin; Kevin Wickman

Neuronal G-protein-gated potassium (GIRK) channels mediate the inhibitory effects of many neurotransmitters. Although the overlapping distribution of GIRK subunits suggests that channel composition varies in the CNS, little direct evidence supports the existence of structural or functional diversity in the neuronal GIRK channel repertoire. Here we show that the GIRK channels linked to GABAB receptors differed in two neuron populations. In the substantia nigra, GIRK2 was the principal subunit, and it was found primarily in dendrites of neurons in the substantia nigra pars compacta (SNc). Baclofen evoked prominent barium-sensitive outward current in dopamine neurons of the SNc from wild-type mice, but this current was completely absent in neurons from GIRK2 knock-out mice. In the hippocampus, all three neuronal GIRK subunits were detected. The loss of GIRK1 or GIRK2 was correlated with equivalent, dramatic reductions in baclofen-evoked current in CA1 neurons. Virtually all of the barium-sensitive component of the baclofen-evoked current was eliminated with the ablation of both GIRK2 and GIRK3, indicating that channels containing GIRK3 contribute to the postsynaptic inhibitory effect of GABAB receptor activation. The impact of GIRK subunit ablation on baclofen-evoked current was consistent with observations that GIRK1, GIRK2, and GABAB receptors were enriched in lipid rafts isolated from mouse brain, whereas GIRK3 was found primarily in higher-density membrane fractions. Altogether, our data show that different GIRK channel subtypes can couple to GABAB receptors in vivo. Furthermore, subunit composition appears to specify interactions between GIRK channels and organizational elements involved in channel distribution and efficient receptor coupling.


Nature Neuroscience | 2007

RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area.

Gwenaël Labouèbe; Marta Lomazzi; Hans Cruz; Cyril Creton; Rafael Luján; Meng Li; Yuchio Yanagawa; Kunihiko Obata; Masahiko Watanabe; Kevin Wickman; Stephanie B. Boyer; Paul A. Slesinger; Christian Lüscher

Agonists of GABAB receptors exert a bi-directional effect on the activity of dopamine (DA) neurons of the ventral tegmental area, which can be explained by the fact that coupling between GABAB receptors and G protein-gated inwardly rectifying potassium (GIRK) channels is significantly weaker in DA neurons than in GABA neurons. Thus, low concentrations of agonists preferentially inhibit GABA neurons and thereby disinhibit DA neurons. This disinhibition might confer reinforcing properties on addictive GABAB receptor agonists such as γ-hydroxybutyrate (GHB) and its derivatives. Here we show that, in DA neurons of mice, the low coupling efficiency reflects the selective expression of heteromeric GIRK2/3 channels and is dynamically modulated by a member of the regulator of G protein signaling (RGS) protein family. Moreover, repetitive exposure to GHB increases the GABAB receptor-GIRK channel coupling efficiency through downregulation of RGS2. Finally, oral self-administration of GHB at a concentration that is normally rewarding becomes aversive after chronic exposure. On the basis of these results, we propose a mechanism that might underlie tolerance to GHB.


American Journal of Transplantation | 2005

The Heart Rate Decrease Caused by Acute FTY720 Administration Is Mediated by the G Protein-Gated Potassium Channel IKACh

Lev Koyrakh; Maria I. Roman; Volker Brinkmann; Kevin Wickman

Sphingosine‐1‐phosphate (S1P) is an endogenous agonist for a family of five G protein‐coupled receptors (S1P1–5) involved in cell proliferation, cardiovascular development and lymphocyte trafficking. The sphingolipid drug FTY720 displays structural similarity to S1P and efficacy as an immunosuppressant in models of autoimmune disease and in solid organ transplantation. While FTY720 is well‐tolerated in humans, it produces a transient reduction of heart rate (HR). As S1P activates the cardiac G protein‐gated potassium channel IKACh, we speculated that the FTY720‐induced HR reduction reflects IKACh activation. We examined FTY720 effects on atrial myocytes from wild‐type and IKACh‐deficient mice. In wild‐type myocytes, the active phosphate metabolite of FTY720 (FTY720‐P) induced single channel activity with conductance, open time, GTP sensitivity and rectification identical to that of IKACh. In whole‐cell recordings, FTY720‐P evoked an inwardly rectifying potassium current in ∼90% of myocytes responding to acetylcholine. Comparable channel activity was never observed in myocytes from IKACh‐deficient mice. In wild‐type mice, acute FTY720 administration produced a dose‐dependent, robust HR reduction. In contrast, the HR reduction induced by FTY720 in IKACh‐deficient mice was blunted. We conclude that the effect of acute FTY720 administration on HR is mediated primarily by IKACh activation.


The Journal of Neuroscience | 2005

Spinal G-Protein-Gated Potassium Channels Contribute in a Dose-Dependent Manner to the Analgesic Effect of μ- and δ- But Not κ-Opioids

Cheryl L. Marker; Rafael Luján; Horace H. Loh; Kevin Wickman

Opioids can evoke analgesia by inhibiting neuronal targets in either the brain or spinal cord, and multiple presynaptic and postsynaptic inhibitory mechanisms have been implicated. The relative significance of presynaptic and postsynaptic inhibition to opioid analgesia is essentially unknown, as are the identities and relevant locations of effectors mediating opioid actions. Here, we examined the distribution of G-protein-gated potassium (GIRK) channels in the mouse spinal cord and measured their contribution to the analgesia evoked by spinal administration of opioid receptor-selective agonists. We found that the GIRK channel subunits GIRK1 and GIRK2 were concentrated in the outer layer of the substantia gelatinosa of the dorsal horn. GIRK1 and GIRK2 were found almost exclusively in postsynaptic membranes of putative excitatory synapses, and a significant degree of overlap with the μ-opioid receptor was observed. Although most GIRK subunit labeling was perisynaptic or extrasynaptic, GIRK2 was found occasionally within the synaptic specialization. Genetic ablation or pharmacologic inhibition of spinal GIRK channels selectively blunted the analgesic effect of high but not lower doses of the μ-opioid receptor-selective agonist [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin. Dose-dependent contributions of GIRK channels to the analgesic effects of the δ-opioid receptor-selective agonists Tyr-d-Ala-Phe-Glu-Val-Val-Gly amide and [d-Pen(2,5)]-enkephalin were also observed. In contrast, the analgesic effect of the κ agonist (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methanesulfonate hydrate was preserved despite the absence of GIRK channels. We conclude that the activation of postsynaptic GIRK1 and/or GIRK2-containing channels in the spinal cord dorsal horn represents a powerful, albeit relatively insensitive, means by which intrathecal μ- and δ-selective opioid agonists evoke analgesia.


The Journal of Neuroscience | 2006

Compartment-Dependent Colocalization of Kir3.2-Containing K+ Channels and GABAB Receptors in Hippocampal Pyramidal Cells

Akos Kulik; Imre Vida; Yugo Fukazawa; Nicole Guetg; Yu Kasugai; Cheryl L. Marker; Franck Rigato; Bernhard Bettler; Kevin Wickman; Michael Frotscher; Ryuichi Shigemoto

G-protein-coupled inwardly rectifying K+ channels (Kir3 channels) coupled to metabotropic GABAB receptors are essential for the control of neuronal excitation. To determine the distribution of Kir3 channels and their spatial relationship to GABAB receptors on hippocampal pyramidal cells, we used a high-resolution immunocytochemical approach. Immunoreactivity for the Kir3.2 subunit was most abundant postsynaptically and localized to the extrasynaptic plasma membrane of dendritic shafts and spines of principal cells. Quantitative analysis of immunogold particles for Kir3.2 revealed an enrichment of the protein around putative glutamatergic synapses on dendritic spines, similar to that of GABAB1. Consistent with this observation, a high degree of coclustering of Kir3.2 and GABAB1 was revealed around excitatory synapses by the highly sensitive SDS-digested freeze–fracture replica immunolabeling. In contrast, in dendritic shafts receptors and channels were found to be mainly segregated. These results suggest that Kir3.2-containing K+ channels on dendritic spines preferentially mediate the effect of GABA, whereas channels on dendritic shafts are likely to be activated by other neurotransmitters as well. Thus, Kir3 channels, localized to different subcellular compartments of hippocampal principal cells, appear to be differentially involved in synaptic integration in pyramidal cell dendrites.


The Journal of Neuroscience | 2004

Spinal G-Protein-Gated K+ Channels Formed by GIRK1 and GIRK2 Subunits Modulate Thermal Nociception and Contribute to Morphine Analgesia

Cheryl L. Marker; Markus Stoffel; Kevin Wickman

G-protein-gated potassium (K+) channels are found throughout the CNS in which they contribute to the inhibitory effects of neurotransmitters and drugs of abuse. Recent studies have implicated G-protein-gated K+ channels in thermal nociception and the analgesic action of morphine and other agents. Because nociception is subject to complex spinal and supraspinal modulation, however, the relevant locations of G-protein-gated K+ channels are unknown. In this study, we sought to clarify the expression pattern and subunit composition of G-protein-gated K+ channels in the spinal cord and to assess directly their contribution to thermal nociception and morphine analgesia. We detected GIRK1 (G-protein-gated inwardly rectifying K+ channel subunit 1) and GIRK2 subunits, but not GIRK3, in the superficial layers of the dorsal horn. Lack of either GIRK1 or GIRK2 was correlated with significantly lower expression of the other, suggesting that a functional and physical interaction occurs between these two subunits. Consistent with these findings, GIRK1 knock-out and GIRK2 knock-out mice exhibited hyperalgesia in the tail-flick test of thermal nociception. Furthermore, GIRK1 knock-out and GIRK2 knock-out mice displayed decreased analgesic responses after the spinal administration of higher morphine doses, whereas responses to lower morphine doses were preserved. Qualitatively similar data were obtained with wild-type mice after administration of the G-protein-gated K+ channel blocker tertiapin. We conclude that spinal G-protein-gated K+ channels consisting primarily of GIRK1/GIRK2 complexes modulate thermal nociception and mediate a significant component of the analgesia evoked by intrathecal administration of high morphine doses.


Current Opinion in Neurobiology | 1995

G-protein regulation of ion channels.

Kevin Wickman; David E. Clapham

Even though the vast majority of ion channels are regulated by voltage, extracellular ligands, phosphorylation, intracellular ions, or a combination of these influences, probably only a handful of ion channels are regulated by direct interaction with activated G proteins. Although results from electrophysiological studies of some channels are consistent with the hypothesis of regulation via direct physical interactions with G proteins, strong biochemical evidence for such interactions is still lacking. In most cases, such evidence has been difficult to obtain because ion channels are present at very low abundances in cell membranes, or because the molecular identity of the channel is unknown. The recent cloning of members of the inwardly rectifying K+ channel and voltage-gated Ca2+ channel families should facilitate the rigorous study of the putative interactions between G proteins and ion channels.

Collaboration


Dive into the Kevin Wickman's collaboration.

Top Co-Authors

Avatar

David E. Clapham

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grigory Krapivinsky

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhilian Xia

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge