Keyuan Zhou
Guangdong Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Keyuan Zhou.
International Journal of Cancer | 2010
Xudong Tang; Qunzhou Zhang; Shihong Shi; Yun Yen; Xiangyong Li; Yuefei Zhang; Keyuan Zhou; Anh D. Le
Adjunctive chemotherapy with bisphosphonates has been reported to delay bone metastasis and improve overall survival in breast cancer. Aside from its antiresorptive effect, bisphosphonates exhibit antitumor activities, in vitro and in vivo, via several mechanisms, including antiangiogenesis. In this study, we investigated the potential molecular mechanisms underlying the antiangiogenic effect of non–nitrogen‐containing and nitrogen‐containing bisphosphonates, clodronate and pamidronate, respectively, in insulin‐like growth factor (IGF)‐1 responsive human breast cancer cells. We tested whether bisphosphonates had any effects on hypoxia‐inducible factor (HIF)‐1α/vascular endothelial growth factor (VEGF) axis that plays a pivotal role in tumor angiogenesis, and our results showed that both pamidronate and clodronate significantly suppressed IGF‐1‐induced HIF‐1α protein accumulation and VEGF expression in MCF‐7 cells. Mechanistically, we found that either pamidronate or clodronate did not affect mRNA expression of HIF‐1α, but they apparently promoted the degradation of IGF‐1‐induced HIF‐1α protein. Meanwhile, we found that the presence of pamidronate and clodronate led to a dose‐dependent decease in the newly‐synthesized HIF‐1α protein induced by IGF‐1 in breast cancer cells after proteasomal inhibition, thus, indirectly reflecting the inhibition of protein synthesis. In addition, our results indicated that the inhibitory effects of bisphosphonates on the HIF‐1α/VEGF axis are associated with the inhibition of the phosphoinositide 3‐kinase/AKT/mammalian target of rapamycin signaling pathways. Consistently, we demonstrated that pamidronate and clodronate functionally abrogated both in vitro and in vivo tumor angiogenesis induced by IGF‐1‐stimulated MCF‐7 cells. These findings have highlighted an important mechanism of the pharmacological action of bisphosphonates in the inhibition of tumor angiogenesis in breast cancer cells.
Cancer Letters | 2011
Gang Li; Li He; Erying Zhang; Jingli Shi; Qunzhou Zhang; Anh D. Le; Keyuan Zhou; Xudong Tang
HPV-16 infection may play an important role in the development of non-small cell lung cancer (NSCLC) among never-smokers. Due to the critical role of angiogenesis in NSCLC development, we describe here the effect of HPV-16 oncoproteins on angiogenesis in NSCLC and the underlying mechanisms. We found that overexpression of HPV-16 E6 and E7 oncoproteins in NSCLC cells significantly promoted angiogenesis both in vitro and in vivo, and correspondingly, an enhanced expression of HIF-1α and VEGF, important pro-angiogenic factors in tumor angiogenesis. Meanwhile, overexpression of HPV-16 oncoproteins also led to HIF-1α-dependent increases in the secretion of several other pro-angiogenic factors, including IL-8. Our findings suggest that HPV-16 oncoproteins contribute to the development of NSCLC possibly by promoting HIF-1α/VEGF-mediated tumor angiogenesis.
Journal of Nutrigenetics and Nutrigenomics | 2013
Xiangyong Li; Yun Feng; Jinhua Liu; Xiaowei Feng; Keyuan Zhou; Xudong Tang
Background/Aims: Numerous studies have shown that epigallocatechin-3-gallate (EGCG), a polyphenol component extracted from green tea, can inhibit the growth and induce apoptosis of various types of human tumor cells. In this study, we evaluated the inhibitory effects of EGCG on the proangiogenic capabilities of A549 cells. Methods: A549 cells starved in serum-free culture medium for 24 h were pretreated with EGCG at various concentrations (0, 10, 25, 50, and 100 μmol/l) for 1 h, followed by the addition of insulin-like growth factor-I (IGF-I) at the final concentration of 40 ng/ml and continued culturing for an additional 16 h. The in vitro angiogenesis analyzing test kit with ECMatrix™ gel was used to detect the formation of capillary tube-like structures. The mRNA expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) was determined by real-time PCR. The protein expression of HIF-1α and VEGF was detected by Western blotting and ELISA, respectively. Results: EGCG significantly inhibited the formation of capillary tube-like structures on the surface of ECMatrix induced by IGF-I both in vitro and in vivo and reduced the level of hemoglobin in Matrigel plugs. In addition, EGCG was shown to significantly inhibit the IGF-I-induced upregulation of HIF-1α protein expression. Meanwhile, EGCG at the concentration of 25 and 100 μmol/l exhibited obvious inhibitory effects on IGF-I-induced VEGF expression (p < 0.01). Conclusion: Our results suggest that EGCG has potent inhibitory effects on tumor angiogenesis induced by IGF-I in human non-small cell lung cancer cells, which may possibly contribute to the downregulation of HIF-1α and VEGF expression.
International Journal of Oncology | 2017
Xiangyong Li; Liu Fm; Bihua Lin; Hai-qing Luo; Meilian Liu; Jinhua Wu; Caihong Li; Ronggang Li; Xin Zhang; Keyuan Zhou; Dong Ren
Cancer cells are characterized by a pathological manifestation of uncontrolled proliferation, which results in tumor formation. Therefore, it is necessary to improve understanding of the underlying mechanism of cell cycle control. Here, we report that miR-150 is downregulated in nasopharyngeal carcinoma tissues and cells. Upregulation of miR-150 suppresses nasopharyngeal carcinoma (NPC) cell proliferation and induces G1/S arrest in vitro, and inhibits tumorigenesis in vivo. Conversely, silencing miR-150 yields the opposite effect. Our results further demonstrate that miR-150 retards nasopharyngeal carcinoma cell proliferation and G1/S transition via targeting multiple cell cycle-related genes, including CCND1, CCND2, CDK2 and CCNE2. Therefore, our results uncover a novel mechanistic understanding of miR-150-mediated tumor suppression in NPC, which will facilitate the development of effective cancer therapies against nasopharyngeal carcinoma.
Oncology Reports | 2015
Jixia Li; Bihua Lin; Xiangyong Li; Xudong Tang; Zhiwei He; Keyuan Zhou
The epidermal growth factor receptor (EGFR) family is reportedly overexpressed in bladder cancer, and tyrosine kinase inhibitors (TKIs) have been suggested as treatment. Gefitinib (Iressa®) is a selective inhibitor of the EGFR and lapatinib is a dual inhibitor of both the EGFR and HER2 (human EGFR type 2 receptor). Both compounds compete with the binding of ATP to the tyrosine kinase domain of the respective receptors to inhibit receptor autophosphorylation causing suppression of signal transduction. Unfortunately, resistance to these inhibitors is a major clinical issue. The purpose of the present study was to use protein array analysis to compare the signaling pathway(s) induced by gefitinib and lapatinib, in UM-UC-5 (drug-sensitive) and UM-UC-14 (drug-resistant) bladder cancer cells and to identify molecular markers that may be useful predictors of their efficacy. The results revealed that phosphorylation of EGFR, HER3, Met and ERK1/2 was markedly overexpressed in the sensitive cell line (UM-UC-5) and was strongly inhibited by the TKIs. Other notable differences included decreased phosphorylation of RSK, GSK3, AMPK, Akt and c-Jun by TKIs in the sensitive cells. In contrast, phosphorylated p53 was highly expressed in the resistant cell line (UM-UC-14) and TKIs had no effect in the resistant cells. Overall results suggest that phosphorylated HER3, ERK1/2 and p53 may be used as biomarkers to determine the sensitivity of bladder cancers to TKIs. In particular, a combination of these markers may be more likely to predict the sensitivity to TKIs.
International Journal of Oncology | 2015
Zhongyi Cui; Caihong Li; Xiangyong Li; Qunzhou Zhang; Yuefei Zhang; Jingjing Shao; Keyuan Zhou
This study investigated the effect of sodium selenite (Na2SeO3) on proliferation, cell cycle, apoptosis as well as the underlying mechanism in CNE-2 nasopharyngeal carcinoma (NPC) cells. The CNE-2 cell line was treated with different concentrations of Na2SeO3, and the effects of Na2SeO3 on cell viability and proliferation were evaluated using Cell Counting kit-8 (CCK-8) assay. Cellular apoptosis and cell cycle were evaluated by flow cytometry following Annexin V‑FITC/PI double staining and PI single staining respectively; nuclei morphology stained with DAPI and Hoechst 333258 was observed under a fluorescence microscope, while DNA fragmentation was detected by agarose gel electrophoresis. The mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were analyzed using fluorescent staining assays. Expression of Bcl-XL, Bax, Bak, and caspase-3 activation were examined by western blotting. The results showed that Na2SeO3 inhibited proliferation and induced apoptosis of CNE-2 cells in a dose- and time-dependent manner. Na2SeO3 at low concentrations induced cell cycle arrest at S phase, while high concentrations of Na2SeO3 induced cell cycle arrest at G0/G1 phase. Furthermore, Na2SeO3 increased ROS level and decreased MMP, upregulated caspase-3 activity and the expression of Bak and Bax but simultaneously downregulated Bcl-XL. In conclusion, our studies demonstrated that Na2SeO3 had significant anti-proliferative and apoptosis-inducing effects via arresting cell cycle and regulating mitochondria-mediated intrinsic caspase pathway in CNE-2 NPC cells, suggesting that Na2SeO3 might have therapeutic potentials in the treatment of NPC.
Tea in Health and Disease Prevention | 2013
Xudong Tang; Qunzhou Zhang; Anh D. Le; Keyuan Zhou
Epidemiological data have shown that green tea consumption is closely related to a reduction in human hepatocellular carcinoma (HCC) risk. Evidence from both in vitro and animal studies has indicated that green tea extract (GTE) and tea catechins, particularly the major constituent (–)-epigallocatechin-3-gallate (EGCG), inhibit the formation and development of various types of tumors, whereby the underlying mechanisms may involve their biological effects on tumor cell proliferation, apoptosis, cell cycle, oxidative stress, angiogenesis, invasion, metastasis, and drug resistance. In various types of HCC cells, GTE has been shown to induce apoptosis through regulating different signaling pathways, to arrest cell cycle progression at G1 phase mainly by inducing p53 and p21 expression, to inhibit angiogenesis by disrupting hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF)-VEGF receptor (VEGFR) axis, and to suppress tumor cell migration, invasion, and metastasis mainly by reducing oxidative stress or the expression of matrix metalloproteinase (MMP)-2 and MMP-9. Moreover, treatment with GTE enhances the sensitization of HCC to chemotherapeutic drugs by regulating carbonyl reductase 1 (CBR1) activity and the expression of multidrug resistance (MDR)-related genes. Therefore, GTE may be a promising chemopreventive and chemotherapeutic agent against HCC.
Cancer Chemotherapy and Pharmacology | 2013
Li He; Erying Zhang; Jingli Shi; Xiangyong Li; Keyuan Zhou; Qunzhou Zhang; Anh D. Le; Xudong Tang
Oncology Reports | 2016
Kai Yao; Jingjing Shao; Keyuan Zhou; Haitao Qiu; Fengxiang Cao; Caihong Li; De Dai
Biomedical Reports | 2013
Yan Liang; Xiangyong Li; Rongwen Lin; Xin Zhang; Huimin Wang; Ning Tan; Keshen Li; Xudong Tang; Keyuan Zhou; Tao Li