Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kezhen Li is active.

Publication


Featured researches published by Kezhen Li.


Nature Genetics | 2015

Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism

Zheng Hu; Da Zhu; Wei Wang; Weiyang Li; Wenlong Jia; Xi Zeng; Wencheng Ding; Lan Yu; Xiaoli Wang; Liming Wang; Hui Shen; Changlin Zhang; Hongjie Liu; Xiao Liu; Yi Zhao; Xiaodong Fang; Shuaicheng Li; Wei Chen; Tang Tang; Aisi Fu; Zou Wang; Gang Chen; Qinglei Gao; Shuang Li; Ling Xi; Changyu Wang; Shujie Liao; Xiangyi Ma; Peng Wu; Kezhen Li

Human papillomavirus (HPV) integration is a key genetic event in cervical carcinogenesis. By conducting whole-genome sequencing and high-throughput viral integration detection, we identified 3,667 HPV integration breakpoints in 26 cervical intraepithelial neoplasias, 104 cervical carcinomas and five cell lines. Beyond recalculating frequencies for the previously reported frequent integration sites POU5F1B (9.7%), FHIT (8.7%), KLF12 (7.8%), KLF5 (6.8%), LRP1B (5.8%) and LEPREL1 (4.9%), we discovered new hot spots HMGA2 (7.8%), DLG2 (4.9%) and SEMA3D (4.9%). Protein expression from FHIT and LRP1B was downregulated when HPV integrated in their introns. Protein expression from MYC and HMGA2 was elevated when HPV integrated into flanking regions. Moreover, microhomologous sequence between the human and HPV genomes was significantly enriched near integration breakpoints, indicating that fusion between viral and human DNA may have occurred by microhomology-mediated DNA repair pathways. Our data provide insights into HPV integration-driven cervical carcinogenesis.


Nature Communications | 2012

An atlas of DNA methylomes in porcine adipose and muscle tissues

M. S. Li; Huilan Wu; Zonggang Luo; Yudong Xia; Jiuqiang Guan; Tobias Wang; Yiren Gu; Longyun Chen; Kerang Zhang; Juncai Ma; Yuping Liu; Z Zhong; J Nie; Songping Zhou; Zhiping Mu; X.L. Wang; Jing Qu; L Jing; Hongyang Wang; Songbo Huang; Na Yi; Zuyun Wang; D Xi; Jun Wang; Guangliang Yin; Lishun Wang; Na Li; Zhimao Jiang; Qiulei Lang; Hui Xiao

It is evident that epigenetic factors, especially DNA methylation, have essential roles in obesity development. Here, using pig as a model, we investigate the systematic association between DNA methylation and obesity. We sample eight variant adipose and two distinct skeletal muscle tissues from three pig breeds living within comparable environments but displaying distinct fat level. We generate 1,381 Gb of sequence data from 180 methylated DNA immunoprecipitation libraries, and provide a genome-wide DNA methylation map as well as a gene expression map for adipose and muscle studies. The analysis shows global similarity and difference among breeds, sexes and anatomic locations, and identifies the differentially methylated regions. The differentially methylated regions in promoters are highly associated with obesity development via expression repression of both known obesity-related genes and novel genes. This comprehensive map provides a solid basis for exploring epigenetic mechanisms of adipose deposition and muscle growth.


BioMed Research International | 2014

Disruption of HPV16-E7 by CRISPR/Cas System Induces Apoptosis and Growth Inhibition in HPV16 Positive Human Cervical Cancer Cells

Zheng Hu; Lan Yu; Da Zhu; Wencheng Ding; Xiaoli Wang; Changlin Zhang; Liming Wang; Xiaohui Jiang; Hui Shen; Dan He; Kezhen Li; Ling Xi; Ding Ma; Hui Wang

High-risk human papillomavirus (HR-HPV) has been recognized as a major causative agent for cervical cancer. Upon HPV infection, early genes E6 and E7 play important roles in maintaining malignant phenotype of cervical cancer cells. By using clustered regularly interspaced short palindromic repeats- (CRISPR-) associated protein system (CRISPR/Cas system), a widely used genome editing tool in many organisms, to target HPV16-E7 DNA in HPV positive cell lines, we showed for the first time that the HPV16-E7 single-guide RNA (sgRNA) guided CRISPR/Cas system could disrupt HPV16-E7 DNA at specific sites, inducing apoptosis and growth inhibition in HPV positive SiHa and Caski cells, but not in HPV negative C33A and HEK293 cells. Moreover, disruption of E7 DNA directly leads to downregulation of E7 protein and upregulation of tumor suppressor protein pRb. Therefore, our results suggest that HPV16-E7 gRNA guided CRISPR/Cas system might be used as a therapeutic strategy for the treatment of cervical cancer.


Journal of Clinical Investigation | 2015

TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy

Zheng Hu; Wencheng Ding; Da Zhu; Lan Yu; Xiaohui Jiang; Xiaoli Wang; Changlin Zhang; Liming Wang; Teng Ji; Dan Liu; Dan He; Xi Xia; Tao Zhu; Juncheng Wei; Peng Wu; Changyu Wang; Ling Xi; Qinglei Gao; Gang Chen; Rong Liu; Kezhen Li; Shuang Li; Shixuan Wang; Jianfeng Zhou; Ding Ma; Hui Wang

Persistent HPV infection is recognized as the main etiologic factor for cervical cancer. HPV expresses the oncoproteins E6 and E7, both of which play key roles in maintaining viral infection and promoting carcinogenesis. While siRNA-mediated targeting of E6 and E7 transcripts temporarily induces apoptosis in HPV-positive cells, it does not eliminate viral DNA within the host genome, which can harbor escape mutants. Here, we demonstrated that specifically targeting E6 and E7 within host DNA with transcription activator-like effector nucleases (TALENs) induces apoptosis, inhibits growth, and reduces tumorigenicity in HPV-positive cell lines. TALEN treatment efficiently disrupted E6 and E7 oncogenes, leading to the restoration of host tumor suppressors p53 and retinoblastoma 1 (RB1), which are targeted by E6 and E7, respectively. In the K14-HPV16 transgenic mouse model of HPV-driven neoplasms, direct cervical application of HPV16-E7-targeted TALENs effectively mutated the E7 oncogene, reduced viral DNA load, and restored RB1 function and downstream targets transcription factor E2F1 and cycling-dependent kinase 2 (CDK2), thereby reversing the malignant phenotype. Together, the results from our study suggest that TALENs have potential as a therapeutic strategy for HPV infection and related cervical malignancy.


BMC Cancer | 2011

Cytoplasmic p21 is a potential predictor for cisplatin sensitivity in ovarian cancer

Xi Xia; Quanfu Ma; Xiao Li; Teng Ji; Pingbo Chen; Hongbin Xu; Kezhen Li; Yong Fang; Danhui Weng; Yanjie Weng; Shujie Liao; Zhiqiang Han; Ronghua Liu; Tao Zhu; Shixuan Wang; Gang Xu; Li Meng; Jianfeng Zhou; Ding Ma

BackgroundP21(WAF1/Cip1) binds to cyclin-dependent kinase complexes and inhibits their activities. It was originally described as an inhibitor of cancer cell proliferation. However, many recent studies have shown that p21 promotes tumor progression when accumulated in the cell cytoplasm. So far, little is known about the correlation between cytoplasmic p21 and drug resistance. This study was aimed to investigate the role of p21 in the cisplatin resistance of ovarian cancer.MethodsRT-PCR, western blot and immunofluorescence were used to detect p21 expression and location in cisplatin-resistant ovarian cancer cell line C13* and its parental line OV2008. Regulation of cytoplasmic p21 was performed through transfection of p21 siRNA, Akt2 shRNA and Akt2 constitutively active vector in the two cell lines; their effects on cisplatin-induced apoptosis were evaluated by flow cytometry. Tumor tissue sections of clinical samples were analyzed by immunohistochemistry.Resultsp21 predominantly localizes to the cytoplasm in C13* compared to OV2008. Persistent exposure to low dose cisplatin in OV2008 leads to p21 translocation from nuclear to cytoplasm, while it had not impact on p21 localization in C13*. Knockdown of cytoplasmic p21 by p21 siRNA transfection in C13* notably increased cisplatin-induced apoptosis through activation of caspase 3. Inhibition of p21 translocation into the cytoplasm by transfection of Akt2 shRNA into C13* cells significantly increased cisplatin-induced apoptosis, while induction of p21 translocation into the cytoplasm by transfection of constitutively active Akt2 in OV2008 enhanced the resistance to cisplatin. Immunohistochemical analysis of clinical ovarian tumor tissues demonstrated that cytoplasmic p21 was negatively correlated with the response to cisplatin based treatment.ConclusionsCytoplasmic p21 is a novel biomarker of cisplatin resistance and it may represent a potential therapeutic target for ovarian tumors that are refractory to conventional treatment.


Molecular Cancer | 2011

Mesenchymal stem cells as carriers and amplifiers in CRAd delivery to tumors

Xi Xia; Teng Ji; Pingbo Chen; Xiao Li; Yong Fang; Qinglei Gao; Shujie Liao; Lanying You; Hongbin Xu; Quanfu Ma; Peng Wu; Wencheng Hu; Mingfu Wu; Li Cao; Kezhen Li; Yanjie Weng; Zhiqiang Han; Junchen Wei; Ronghua Liu; Shixuan Wang; Gang Xu; Dao Wen Wang; Jianfeng Zhou; Ding Ma

BackgroundMesenchymal stem cells (MSCs) have been considered to be the attractive vehicles for delivering therapeutic agents toward various tumor diseases. This study was to explore the distribution pattern, kinetic delivery of adenovirus, and therapeutic efficacy of the MSC loading of E1A mutant conditionally replicative adenovirus Adv-Stat3(-) which selectively replicated and expressed high levels of anti-sense Stat3 complementary DNA in breast cancer and melanoma cells.MethodsWe assessed the release ability of conditionally replicative adenovirus (CRAd) from MSC using crystal violet staining, TCID50 assay, and quantitative PCR. In vitro killing competence of MSCs carrying Adv-Stat3(-) toward breast cancer and melanoma was performed using co-culture system of transwell plates. We examined tumor tropism of MSC by Prussian blue staining and immunofluorescence. In vivo killing competence of MSCs carrying Adv-Stat3(-) toward breast tumor was analyzed by comparison of tumor volumes and survival periods.ResultsAdv-Stat3(-) amplified in MSCs and were released 4 days after infection. MSCs carrying Adv-Stat3(-) caused viral amplification, depletion of Stat3 and its downstream proteins, and led to significant apoptosis in breast cancer and melanoma cell lines. In vivo experiments confirmed the preferential localization of MSCs in the tumor periphery 24 hours after tail vein injection, and this localization was mainly detected in the tumor parenchyma after 72 hours. Intravenous injection of MSCs carrying Adv-Stat3(-) suppressed the Stat3 pathway, down-regulated Ki67 expression, and recruited CD11b-positive cells in the local tumor, inhibiting tumor growth and increasing the survival of tumor-bearing mice.ConclusionsThese results indicate that MSCs migrate to the tumor site in a time-dependent manner and could be an effective platform for the targeted delivery of CRAd and the amplification of tumor killing effects.


Apoptosis | 2011

Triggering of death receptor apoptotic signaling by human papillomavirus 16 E2 protein in cervical cancer cell lines is mediated by interaction with c-FLIP

Wei Wang; Yong Fang; Ni Sima; Yan Li; Wei Li; Li Li; Linfei Han; Shujie Liao; Zhiqiang Han; Qinglei Gao; Kezhen Li; Dongrui Deng; Li Meng; Jianfeng Zhou; Shixuan Wang; Ding Ma

Human papillomavirus (HPV) E2 gene disruption is one of the key features of HPV-induced cervical malignant transformation. Though it is thought to prevent progression of carcinogenesis, the pro-apoptotic function of E2 protein remains poorly understood. This study shows that expression of HPV16 E2 induces apoptosis both in HPV-positive and -negative cervical cancer cell lines and leads to hyperactivation of caspase-8 and caspase-3. Activation of these signaling factors is responsible for the observed sensitivity to apoptosis upon treatment with anti-Fas antibody or TNF-α. In addition, immunoprecipitation experiments clearly show an interaction between HPV16 E2 and c-FLIP, a key regulator of apoptotic cell death mediated by death receptor signaling. Moreover, c-FLIP and a caspase-8 inhibitor protect cells from HPV16 E2-mediated apoptosis. Overexpression of c-FLIP rescues cervical cancer cells from apoptosis induced by HPV16 E2 protein expression. The data suggest that HPV16 E2 abrogates the apoptosis-inhibitory function of c-FLIP and renders the cell hypersensitive to the Fas/FasL apoptotic signal even below threshold concentration. This suggests a novel mechanism for deregulation of cervical epithelial cell growth upon HPV-induced transformation, which is of great significance in developing therapeutic strategies for intervention of cervical carcinogenesis.


Clinical Cancer Research | 2014

Zinc Finger Nucleases Targeting the Human Papillomavirus E7 Oncogene Induce E7 Disruption and a Transformed Phenotype in HPV16/18-Positive Cervical Cancer Cells

Wencheng Ding; Zheng Hu; Da Zhu; Xiaohui Jiang; Lan Yu; Xiaoli Wang; Changlin Zhang; Liming Wang; Teng Ji; Kezhen Li; Dan He; Xi Xia; Dan Liu; Jianfeng Zhou; Ding Ma; Hui Wang

Purpose: Cervical cancer is mainly caused by infections of high-risk human papillomavirus (HR-HPV). Persistent expression of HR-HPV oncogenes E6 and E7 is implicated in malignant transformation. The aim was to provide proof-of-concept data to support use of zinc finger nucleases (ZFN) targeting HPV E7 to treat HPV-related cervical cancer. Experimental Design: We designed and constructed ZFNs that could specifically recognize and cleave HPV16/18 E7 DNA. We tested the cleavage efficiency of selected ZFN16-E7-S2 and ZFN18-E7-S2 by using single-strand annealing (SSA) assay. Cell viability and colony formation assays were used to estimate the inhibition of cell growth that received treatments of ZFNs. Gene disruption of HPV E7 and downstream genes were examined by Western blotting. Cell apoptosis assay was used to test the specificity and efficiency of induction of HPV type-specific apoptosis. We also introduced xenograft formation assays to estimate the potential of inhibition of HPV-related disease. Results: We found ZFN16-E7-S2 and ZFN18-E7-S2 disrupted HPV E7 oncogenes in HPV16/18–positive cervical cancer cells. Both ZFNs effectively led to inhibition of type-specific cervical cancer cell growth, and specifically induced apoptosis of corresponding HPV16- and HPV18-positive cervical cancer cell lines. ZFN16-E7-S2 and ZFN18-E7-S2 also repressed xenograft formation in vivo. Conclusion: ZFNs targeting HPV16/18 E7 could effectively induce disruption of E7 oncogenes and lead to type-specific and efficient growth inhibition and apoptosis of HPV-positive cells. ZFNs targeting HPV16/18 E7 oncogenes could be used as novel therapeutic agents for the treatment of HPV-related cervical cancer. Clin Cancer Res; 20(24); 6495–503. ©2014 AACR.


Acta Pharmacologica Sinica | 2013

Inhibition of Hec1 expression enhances the sensitivity of human ovarian cancer cells to paclitaxel

Qingqing Mo; Pingbo Chen; Xin Jin; Qian Chen; Lan Tang; Beibei Wang; Kezhen Li; Peng Wu; Yong Fang; Shixuan Wang; Jianfeng Zhou; Ding Ma; Gang Chen

Aim:Hec1, a member of the Ndc80 kinetochore complex, is highly expressed in cancers. The aim of this study was to explore the role and mechanism of action of Hec1 with respect to the cytotoxicity of paclitaxel in ovarian cancer.Methods:Thirty ovarian cancer samples and 6 normal ovarian samples were collected. Hec1 expression in these samples was determined with immunohistochemistry. Ovarian cancer cell lines A2780, OV2008, C13K, SKOV3, and CAOV3 and A2780/Taxol were examined. Cell apoptosis and cell cycle analysis were detected with flow cytometric technique. siRNA was used to delete Hec1 in the cells. The expression of related mRNAs and proteins was measured using RT-PCR and Western blot analysis, respectively.Results:Hec1 expression was significantly higher in ovarian cancer samples than in normal ovarian samples, and was associated with paclitaxel-resistance and poor prognosis. Among the 6 ovarian cancer cell lines examined, Hec1 expression was highest in paclitaxel-resistant A2780/Taxol cells, and lowest in A2780 cells. Depleting Hec1 in A2780/Taxol cells with siRNA decreased the IC50 value of paclitaxel by more than 10-fold (from 590±26.7 to 45.6±19.4 nmol/L). Depleting Hec1 in A2780 cells had no significant effect on the paclitaxel sensitivity. In paclitaxel-treated A2780/Taxol cells, depleting Hec1 significantly increased the cleaved PARP and Bax protein levels, and decreased the Bcl-xL protein level.Conclusion:Hec1 overexpression is associated with the progression and poor prognosis of ovarian cancer. Inhibition of Hec1 expression can sensitize ovarian cancer cells to paclitaxel.


Frontiers of Medicine in China | 2017

Overexpressed miR-9 promotes tumor metastasis via targeting E-cadherin in serous ovarian cancer

Bo Zhou; Hongbin Xu; Meng Xia; Chaoyang Sun; Na Li; Ensong Guo; Lili Guo; Wanying Shan; Hao Lu; Yifan Wu; Yuan Li; Degui Yang; Danhui Weng; Li Meng; Junbo Hu; Ding Ma; Gang Chen; Kezhen Li

MicroRNAs (miRNAs) play critical roles in the development and progression in various cancers. Dysfunctional miR-9 expression remains ambiguous, and no consensus on the metastatic progression of ovarian cancer has been reached. In this study, results from the bioinformatics analysis show that the 3′-UTR of the E-cadherin mRNA was directly regulated by miR-9. Luciferase reporter assay results confirmed that miR-9 could directly target this 3′-UTR. miR-9 and E-cadherin expression in ovarian cancer tissue was quantified by qRT-PCR. Migration and invasion were detected by wound healing and Transwell system assay in SKOV3 and A2780. qRT-PCR and Western blot were performed to detect the epithelial‒mesenchymal transition-associated mRNA and proteins. Immunofluorescence technique was used to analyze the expression and subcellular localization of E-cadherin, N-cadherin, and vimentin. The results showed that miR-9 was frequently upregulated in metastatic serous ovarian cancer tissue compared with paired primary ones. Upregulation of miR-9 could downregulate the expression of E-cadherin but upregulate the expression of mesenchymal markers (N-cadherin and vimentin). Overexpression of miR-9 could promote the cell migration and invasion in ovarian cancer, and these processes could be effectively inhibited via miR-9 inhibitor. Thus, our study demonstrates that miR-9 may promote ovarian cancer metastasis via targeting E-cadherin and a novel potential therapeutic approach to control metastasis of ovarian cancer.

Collaboration


Dive into the Kezhen Li's collaboration.

Top Co-Authors

Avatar

Ding Ma

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Gang Chen

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jianfeng Zhou

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Li Meng

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Shixuan Wang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Da Zhu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Danhui Weng

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hui Wang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Peng Wu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tao Zhu

Huazhong University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge