Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Khaldon Bodoor is active.

Publication


Featured researches published by Khaldon Bodoor.


Asian Pacific Journal of Cancer Prevention | 2014

DNA Hypermethylation of Cell Cycle (p15 and p16) and Apoptotic (p14, p53, DAPK and TMS1) Genes in Peripheral Blood of Leukemia Patients

Khaldon Bodoor; Yazan Haddad; Asem Alkhateeb; Abdullah Al-Abbadi; Mohammad Dowairi; Ahmad Magableh; Nazzal Bsoul; Abdulhameed Ghabkari

Aberrant DNA methylation of tumor suppressor genes has been reported in all major types of leukemia with potential involvement in the inactivation of regulatory cell cycle and apoptosis genes. However, most of the previous reports did not show the extent of concurrent methylation of multiple genes in the four leukemia types. Here, we analyzed six key genes (p14, p15, p16, p53, DAPK and TMS1) for DNA methylation using methylation specific PCR to analyze peripheral blood of 78 leukemia patients (24 CML, 25 CLL, 12 AML, and 17 ALL) and 24 healthy volunteers. In CML, methylation was detected for p15 (11%), p16 (9%), p53 (23%) and DAPK (23%), in CLL, p14 (25%), p15 (19%), p16 (12%), p53 (17%) and DAPK (36%), in AML, p14 (8%), p15 (45%), p53 (9%) and DAPK (17%) and in ALL, p15 (14%), p16 (8%), and p53 (8%). This study highlighted an essential role of DAPK methylation in chronic leukemia in contrast to p15 methylation in the acute cases, whereas TMS1 hypermethylation was absent in all cases. Furthermore, hypermethylation of multiple genes per patient was observed, with obvious selectiveness in the 9p21 chromosomal region genes (p14, p15 and p16). Interestingly, methylation of p15 increased the risk of methylation in p53, and vice versa, by five folds (p=0.03) indicating possible synergistic epigenetic disruption of different phases of the cell cycle or between the cell cycle and apoptosis. The investigation of multiple relationships between methylated genes might shed light on tumor specific inactivation of the cell cycle and apoptotic pathways.


Cancer Epidemiology | 2010

FGFR3 mutational status and protein expression in patients with bladder cancer in a Jordanian population

Khaldon Bodoor; Abdulhameed Ghabkari; Ziad W. Jaradat; Asem Alkhateeb; Saied A. Jaradat; Mohammed A. Al-Ghazo; Ismail Matalka; Hisham Musleh; Yazan Haddad

Bladder cancer accounts for nearly 5% of all newly diagnosed cancers in Jordan, with a much higher frequency in males. Recent studies have shown that activating mutations in FGFR3 are the most common findings in non-invasive low grade bladder tumors. In this study, we, retrospectively, investigated a cohort of 121 bladder cancer patients with various grades and stages of the tumor for molecular changes in FGFR3. Overexpression of FGFR3 was observed in 49%, 34%, 15%, and 2% of pTa, pT1, pT2, and pT3 cases, respectively. Further, FGFR3 expression was positive in 45%, 26%, and 30% of G1, G2 and G3 cases, respectively. Mutational analysis of exons 7, 10 and 15 of FGFR3 identified four previously reported mutations, namely R248C (n=4; 10%), S249C (n=23; 59%), Y375C (n=7; 18%), G382R (n=4; 10%), and one novel mutation, G382E (n=1; 3%). Our results indicate that both mutations and overexpression of FGFR3 are correlated together, and are more prevalent in early stage (pTa and pT1) and low grade (G1 and G2) bladder tumors. Survival analysis showed no contribution of changes in FGFR3 on the patients survival. Multivariate Cox proportional hazards model analysis of overall survival for the following variables: age, gender, stage and grade of tumor, and FGFR3 (expression and mutation) revealed that age, stage and grade of tumor are independent predictors of overall survival in patients with bladder cancer. Our work is the first to address the molecular status of FGFR3 in Jordanian patients with bladder cancer, and provides further support for FGFR3 as a key player in the initiation of bladder tumors.


Journal of Biological Chemistry | 2010

Smoothelin-like 1 Protein Regulates Myosin Phosphatase-targeting Subunit 1 Expression during Sexual Development and Pregnancy

Beáta Lontay; Khaldon Bodoor; Douglas H. Weitzel; David Loiselle; Christopher N. Fortner; Szabolcs Lengyel; Donghai Zheng; James E. deVente; Robert C. Hickner; Timothy A. J. Haystead

Pregnancy coordinately alters the contractile properties of both vascular and uterine smooth muscles reducing systemic blood pressure and maintaining uterine relaxation. The precise molecular mechanisms underlying these pregnancy-induced adaptations have yet to be fully defined but are likely to involve changes in the expression of proteins regulating myosin phosphorylation. Here we show that smoothelin like protein 1 (SMTNL1) is a key factor governing sexual development and pregnancy induced adaptations in smooth and striated muscle. A primary target gene of SMTNL1 in these muscles is myosin phosphatase-targeting subunit 1 (MYPT1). Deletion of SMTNL1 increases expression of MYPT1 30–40-fold in neonates and during development expression of both SMTNL1 and MYPT1 increases over 20-fold. Pregnancy also regulates SMTNL1 and MYPT1 expression, and deletion SMTNL1 greatly exaggerates expression of MYPT1 in vascular smooth muscle, producing a profound reduction in force development in response to phenylephrine as well as sensitizing the muscle to acetylcholine. We also show that MYPT1 is expressed in Type2a muscle fibers in mice and humans and its expression is regulated during pregnancy, suggesting unrecognized roles in mediating skeletal muscle plasticity in both species. Our findings define a new conserved pathway in which sexual development and pregnancy mediate smooth and striated muscle adaptations through SMTNL1 and MYPT1.


Bioorganic & Medicinal Chemistry | 2012

A highly selective Hsp90 affinity chromatography resin with a cleavable linker.

Philip F. Hughes; Jared J. Barrott; David A. Carlson; David Loiselle; Brittany L. Speer; Khaldon Bodoor; Lauretta A. Rund; Timothy A. J. Haystead

Over 200 proteins have been identified that interact with the protein chaperone Hsp90, a recognized therapeutic target thought to participate in non-oncogene addiction in a variety of human cancers. However, defining Hsp90 clients is challenging because interactions between Hsp90 and its physiologically relevant targets involve low affinity binding and are thought to be transient. Using a chemo-proteomic strategy, we have developed a novel orthogonally cleavable Hsp90 affinity resin that allows purification of the native protein and is quite selective for Hsp90 over its immediate family members, GRP94 and TRAP 1. We show that the resin can be used under low stringency conditions for the rapid, unambiguous capture of native Hsp90 in complex with a native client. We also show that the choice of linker used to tether the ligand to the insoluble support can have a dramatic effect on the selectivity of the affinity media.


Asian Pacific Journal of Cancer Prevention | 2012

Evaluation of BCL-6, CD10, CD138 and MUM-1 Expression in Diffuse Large B-Cell Lymphoma patients: CD138 is a Marker of Poor Prognosis

Khaldon Bodoor; Ismail Matalka; Rami Hayajneh; Yazan Haddad; Waleed Gharaibeh

The diffuse large B-cell lymphoma (DLBCL) encompasses two major groups of tumors with uneven survival outcomes--germinal center B-cell (GCB) and non-germinal center B-cell (non-GCB). In the present study, we investigated the expression of GCB markers (BCL-6 and CD10) and non-GCB markers (CD138 and MUM-1) in an effort to evaluate their prognostic value. Paraffin-embedded tumor biopsies of 46 Jordanian DLBCL patients were analyzed, retrospectively, by immunohistochemistry to investigate the expression of BCL-6, CD10, CD138 and MUM-1. In addition, survival curves were calculated with reference to marker expression, age, sex and nodal involvement. Positive expression of BCL-6, CD10, CD138 and MUM-1 was shown in 78%, 61%, 39% and 91% of the cases, respectively, that of BCL-6 being associated with better overall survival (p = 0.02), whereas positive CD138 was linked with poor overall survival (p = 0.01). The expression of CD10 and MUM-1 had no impact on the overall survival. Among the clinical characteristics studied, diagnosis at an early age, nodal involvement and maleness were associated with a higher overall survival for DLBCL patients. Our results underline the importance of BCL-6 as a marker of better prognosis and CD138 as a marker of poor prognosis for DLBCL patients.


Journal of Biological Chemistry | 2011

Smoothelin-like 1 protein is a bifunctional regulator of the progesterone receptor during pregnancy

Khaldon Bodoor; Beáta Lontay; Rachid Safi; Douglas H. Weitzel; David Loiselle; Zhengzheng Wei; Szabolcs Lengyel; Donald P. McDonnell; Timothy A. J. Haystead

During pregnancy, uterine smooth muscle (USM) coordinately adapts its contractile phenotype in order to accommodate the developing fetus and then prepare for delivery. Herein we show that SMTNL1 plays a major role in pregnancy to promote adaptive responses in USM and that this process is specifically mediated through interactions of SMTNL1 with the steroid hormone receptor PR-B. In vitro and in vivo SMTNL1 selectively binds PR and not other steroid hormone receptors. The physiological relationship between the two proteins was also established in global gene expression and transcriptional reporter studies in pregnant smtnl1−/− mice and by RNA interference in progesterone-sensitive cell lines. We show that the contraction-associated and progestin-sensitive genes (oxytocin receptor, connexin 43, and cyclooxygenase-2) and prolactins are down-regulated in pregnant smtnl1−/− mice. We suggest that SMTNL1 is a bifunctional co-regulator of PR-B signaling and thus provides a molecular mechanism whereby PR-B is targeted to alter gene expression patterns within USM cells to coordinately promote alterations in USM function during pregnancy.


Journal of Biological Chemistry | 2015

Pregnancy and Smoothelin-like Protein 1 (SMTNL1) Deletion Promote the Switching of Skeletal Muscle to a Glycolytic Phenotype in Human and Mice

Beáta Lontay; Khaldon Bodoor; Adrienn Sipos; Douglas H. Weitzel; David Loiselle; Rachid Safi; Donghai Zheng; James E. deVente; Robert C. Hickner; Donald P. McDonnell; Thomas J. Ribar; Timothy A. J. Haystead

Background: Pregnancy promotes physiological adaptations throughout the body mediated by the female sex hormones. Results: Pregnancy promotes switching of skeletal muscle to a glycolytic phenotype through the smoothelin-like protein 1 transcriptional cofactor. Conclusion: Deletion of SMTNL1 is able to mimic the effect of pregnancy in mice. Significance: Novel mechanism to explain insulin resistance during pregnancy. Pregnancy promotes physiological adaptations throughout the body, mediated by the female sex hormones progesterone and estrogen. Changes in the metabolic properties of skeletal muscle enable the female body to cope with the physiological challenges of pregnancy and may also be linked to the development of insulin resistance. We conducted global microarray, proteomic, and metabolic analyses to study the role of the progesterone receptor and its transcriptional regulator, smoothelin-like protein 1 (SMTNL1) in the adaptation of skeletal muscle to pregnancy. We demonstrate that pregnancy promotes fiber-type changes from an oxidative to glycolytic isoform in skeletal muscle. This phenomenon is regulated through an interaction between SMTNL1 and progesterone receptor, which alters the expression of contractile and metabolic proteins. smtnl1−/− mice are metabolically less efficient and show impaired glucose tolerance. Pregnancy antagonizes these effects by inducing metabolic activity and increasing glucose tolerance. Our results suggest that SMTNL1 has a role in mediating the actions of steroid hormones to promote fiber switching in skeletal muscle during pregnancy. Our findings also bear on the management of gestational diabetes that develops as a complication of pregnancy in ∼4% of women.


Disease Markers | 2009

Frequency of the hemochromatosis gene (HFE) variants in a Jordanian Arab population and in diabetics from the same region

Asem Alkhateeb; Amal Uzrail; Khaldon Bodoor

Hereditary HFE-linked hemochromatosis is a frequent recessive disorder among individuals of northern European ancestry. The clinical characteristic of this disease is the gradual accumulation of iron in internal organs, which ultimately may lead to organ damage and death. Three allelic variants of HFE gene have been correlated with hereditary hemochromatosis: C282Y is significantly associated with hereditary hemochromatosis in populations of Celtic origin, H63D and S65C are associated with milder form of iron overload. In this study we performed mutation analysis to identify allele frequency of the three variants of HFE gene in Jordanian Arab population, to assess deviations of these frequencies from those detected elsewhere, and to determine if there is an increased frequency of these variants in a diabetic population (Type 2 diabetes) from the same area. DNA was extracted from blood samples of 440 individuals attending King Abdullah University Hospital for ambulatory services. We used polymerase chain reaction (PCR) to amplify exons 2 and 4 of the HFE gene then restriction fragment length polymorphism (RFLP) method to detect the variants. There were neither homozygous nor heterozygous for C282Y variant. For the H63D variant, 0.68% were homozygous and 21.1% were heterozygous. For the S65C variant, there were no homozygous and 0.23% were heterozygous. Allelic frequencies were, 0%, 11.25%, and 0.11% for C282Y, H63D, and S65C, respectively. Our samples were subdivided into two categories of type 2 diabetic (89 cases) and controls (blood donors, 204 cases) and compared with regard to the H63D variant. Both groups did not have homozygous H63D variant. H63D heterozygous in diabetics were 23.60% and in blood donor controls 22.55%. Allelic frequency of the mutant H63D allele was 11.80% in diabetics and 11.27% for the blood donor controls. This is the first study to show the frequency of the three hemochromatosis gene variants in Jordan with the interesting finding of no C282Y allele detected in 440 samples. Additionally, no significant difference was observed in H63D variant frequency in type 2 diabetics as compared to controls.


Chemistry & Biology | 2017

Takinib, a Selective TAK1 Inhibitor, Broadens the Therapeutic Efficacy of TNF-α Inhibition for Cancer and Autoimmune Disease

Juliane Totzke; Deepak Gurbani; Rene Raphemot; Philip F. Hughes; Khaldon Bodoor; David A. Carlson; David Loiselle; Asim K. Bera; Liesl S. Eibschutz; Marisha M. Perkins; Amber L. Eubanks; Phillip L. Campbell; David A. Fox; Kenneth D. Westover; Timothy A. J. Haystead; Emily R. Derbyshire

Tumor necrosis factor alpha (TNF-α) has both positive and negative roles in human disease. In certain cancers, TNF-α is infused locally to promote tumor regression, but dose-limiting inflammatory effects limit broader utility. In autoimmune disease, anti-TNF-α antibodies control inflammation in most patients, but these benefits are offset during chronic treatment. TAK1 acts as a key mediator between survival and cell death in TNF-α-mediated signaling. Here, we describe Takinib, a potent and selective TAK1 inhibitor that induces apoptosis following TNF-α stimulation in cell models of rheumatoid arthritis and metastatic breast cancer. We demonstrate that Takinib is an inhibitor of autophosphorylated and non-phosphorylated TAK1 that binds within the ATP-binding pocket and inhibits by slowing down the rate-limiting step of TAK1 activation. Overall, Takinib is an attractive starting point for the development of inhibitors that sensitize cells to TNF-α-induced cell death, with general implications for cancer and autoimmune disease treatment.


Meta Gene | 2016

Identification of a novel WFS1 homozygous nonsense mutation in Jordanian children with Wolfram syndrome.

Khaldon Bodoor; Osama Batiha; Ayman Abu-Awad; Khaldon Al-Sarihin; Haya Ziad; Yousef Jarun; Aya Abu-sheikha; Sara Abu Jalboush; Khoulod S. Alibrahim

Wolfram syndrome (WS) is a rare autosomal recessive neurodegenerative disorder characterized by the presentation of early onset type I diabetes mellitus and optic atrophy with later onset diabetes insipidus and deafness. WFS1 gene was identified on chromosome 4p16.1 as the gene responsible for WS disease given that most of the WS patients were found to carry mutations in this gene. This study was carried out to investigate the molecular spectrum of WFS1 gene in Jordanian families. Molecular and clinical characterization was performed on five WS patients from two unrelated Jordanian families. Our data indicated that WS patients of the first family harbored two deletion mutations (V415del and F247fs) located in exon 8 and exon 7 respectively, with a compound heterozygous pattern of inheritance; while in the second family, we identified a novel nonsense mutation (W185X) located in exon 5 in the N-terminal cytoplasmic domain with a homozygous pattern of inheritance. This mutation can be considered as loss of function mutation since the resulting truncated protein lost both the transmembrane domain and the C-terminal domain. Additionally, the W185X mutation lies within the CaM binding domain in wolframin protein which is thought to have a role in the regulation of wolframin function in response to calcium levels.

Collaboration


Dive into the Khaldon Bodoor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asem Alkhateeb

Jordan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ismail Matalka

Jordan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aya Abu-sheikha

Jordan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sara Abu Jalboush

Jordan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge