Khaled Abou-El-Hossein
Nelson Mandela Metropolitan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Khaled Abou-El-Hossein.
South African Journal of Industrial Engineering | 2011
A.O. Oke; Khaled Abou-El-Hossein; Nicolaas J. Theron
As a result of increasing global industrial competition, it has become essential for world economies to implement an effective industrial strategy that reliably and quickly addresses sudden changes in product design. An emerging strategy that might enable industries to cope with rapidly changing product specifications is based on reconfiguring the manufacturing systems. In this paper, the authors present the development of a manufacturing system that will be easily reconfigurable. The developed manufacturing system exhibits the ability and potential for a rapid alteration of manufacturing capacity and the fast integration of new products into the existing manufacturing system. OPSOMMING As gevolg van toenemende wereldwye industriele mededinging het dit noodsaaklik geword vir wereld-ekonomiee om ’n effektiewe industriele strategie te implementeer om betroubaar en vinnig skielike veranderinge in produkontwerp te hanteer. ’n Nuwe strategie, wat nywerhede moontlik in staat kan stel om vinnig veranderende produkspesifikasies te hanteer, is gebaseer op herkonfigurasie van vervaardigingstelsels. In hierdie artikel word die ontwikkeling van ’n vervaardigingstelsel wat maklik her-konfigureerbaar is, bekend gestel. Die ontwikkelde vervaardigingstelsel toon die vermoe en potensiaal vir vinnige verandering van die vervaardigingskapasiteit en die vinnige integrasie van nuwe produkte in ’n bestaande produksiestelsel.
Proceedings of SPIE | 2015
Timothy Otieno; Khaled Abou-El-Hossein; Wei-Yao Hsu; Yuan-Chieh Cheng; Zwelinzima Mkoko
Ultra-high precision machining is used intensively in the photonics industry for the production of various optical components. Aluminium alloys have proven to be advantageous and are most commonly used over other materials to make various optical components. Recently, the increasing demand from optical systems for optical aluminium with consistent material properties has led to the development of newly modified grades of aluminium alloys produced by rapid solidification in the foundry process. These new aluminium grades are characterised by their finer microstructures and refined mechanical and physical properties. However the machining database of these new optical aluminium grades is limited and more research is still required to investigate their machinability performance when they are diamond turned in ultrahigh precision manufacturing environment. This work investigates the machinability of rapidly solidified aluminium RSA 905 by varying a number of diamond-turning cutting parameters and measuring the surface roughness over a cutting distance of 4 km. The machining parameters varied in this study were the cutting speed, feed rate and depth of cut. The results showed a common trend of decrease in surface roughness with increasing cutting distance. The lowest surface roughness Ra result obtained after 4 km in this study was 3.2 nm. This roughness values was achieved using a cutting speed of 1750 rpm, feed rate of 5 mm/min and depth of cut equal to 25 μm.
Proceedings of SPIE | 2014
Yuan-Chieh Cheng; Wei-Yao Hsu; Khaled Abou-El-Hossein; Oluwole Olufayo; Timothy Otieno
Aluminum 6061 is often considered the preferred material for manufacturing optical components for ground-based astronomical applications. One reason for using this material is its high specific stiffness and excellent thermal properties. Moreover, a large amount of data exists for this material and commercially available aluminum 6061 can be diamond turned to achieve surface roughness values of approximately 4 to 8 nm, which is adequate for applications that involve the infrared spectral range, but not for the near-ultraviolet wavelength (NUV) spectral range. In this study, we used a novel aluminum material, fabricated using a rapid solidification process that is equivalent to the conventional aluminum 6061 alloy grade. Using rapidly solidified aluminum (RSA) can achieve improved surface finish and enhanced optical performance. The rapid solidification process was realized using a melt spinning operation, which achieves a high cooling rate to yield a fine microstructure. The properties of RSA 6061 are similar to those of conventional aluminum 6061, but its grain size is extremely small. In this paper, the background of RSA is introduced, and the diamond turnability characteristics and coating processes for both traditional aluminum 6061 and RSA are discussed. The surface roughness and grain structure of RSA were evaluated using white light interferometers and the surface roughness during coating of the reflectance multilayers of samples were analyzed using near-ultraviolet wavelengths. Finally, indicators such as optimal cutting parameters and optical performance are discussed.
IOP Conference Series: Materials Science and Engineering | 2011
Moola Mohan Reddy; Alexander Gorin; Khaled Abou-El-Hossein
Advanced ceramics of Machinable glass ceramic is attractive material to produce high accuracy miniaturized components for many applications in various industries such as aerospace, electronics, biomedical, automotive and environmental communications due to their wear resistance, high hardness, high compressive strength, good corrosion resistance and excellent high temperature properties. Many research works have been conducted in the last few years to investigate the performance of different machining operations when processing various advanced ceramics. Micro end-milling is one of the machining methods to meet the demand of micro parts. Selecting proper machining parameters are important to obtain good surface finish during machining of Machinable glass ceramic. Therefore, this paper describes the development of predictive model for the surface roughness of Machinable glass ceramic in terms of speed, feed rate by using micro end-milling operation.
Key Engineering Materials | 2017
Muhammad M. Liman; Khaled Abou-El-Hossein; Abubakar I. Jumare; Peter Babatunde Odedeyi; Abdulqadir N. Lukman
Contact lens manufacture requires high accuracy and surface integrity. Surface roughness an important response because it has direct influence toward the part performance and the production cost. Hence, choosing optimal cutting parameters will not only improve the quality measure but also the productivity. This research work is therefore aimed at developing a predictive surface roughness model and investigate a finish cutting conditions of ONSI-56 contact lens polymer with a monocrystalline diamond cutting tool. In this work, a novel surface roughness prediction model, in which the feed rate, cutting speed and depth of cut are considered is developed. This combined process was successfully modeled using a Box–Behnken design (BBD) with response surface methodology (RSM). The effects of feed rate, cutting speed and depth of cut were investigated. Analysis of variance (ANOVA) showed that the proposed quadratic model effectively interpreted the experimental data with coefficients of determination of R2 = 0.89 and adjusted R2 = 0.84. The worse surface value was obtained at high feedrate and low spindle speed.
Proceedings of SPIE | 2015
Yuan-Chieh Cheng; Wei-Yao Hsu; Ching-Hsiang Kuo; Khaled Abou-El-Hossein; Timothy Otieno
The metal mirror has been widely used in optical application for a longtime. Especially the aluminum 6061 is often considered the preferred material for manufacturing optical components for ground-based astronomical applications. One reason for using this material is its high specific stiffness and excellent thermal properties. However, a large amount of data exists for this material and commercially available aluminum 6061 using single point diamond turning (SPDT) and polishing process can achieve surface roughness values of approximately 2 to 4 nm, which is adequate for applications that involve the infrared spectral range, but not for the shorter spectral range. A novel aluminum material, fabricated using a rapid solidification process that is equivalent to the conventional aluminum 6061 alloy grade has been used in optical applications in recent years because of its smaller grain size. In this study, the surface quality of the rapid solidification aluminum after single point diamond turning and followed by magnetorheological finish (MRF) process is investigated and compared with conventional aluminum 6061. Both the surface roughness Ra was evaluated using white light interferometers. Finally, indicators such as optimal fabrication parameter combination and optical performance are discussed.
South African Journal of Industrial Engineering | 2013
Khaled Abou-El-Hossein
Infra-red optical components are made mainly from hard and brittle materials such as germanium and silicon. Silicon machining is characterised by some difficulties when ultra-high precision machined by mono-crystalline single-point diamond. Accelerated tool wear and machined-surface deterioration may take place if the machining parameters are not properly selected. In this study, we conducted a machining test on an ultra-high precision machine tool, using ductile regime cutting conditions when fabricating a convex surface on a silicon lens of aperture of 60 mm diameter, and using a mono-crystalline diamond. It was found that the cutting conditions for shaping a convex surface of 500 mm radius resulted in good form accuracy. However, more attention should be paid to optimising the holding force of the vacuum chuck employed.
Advanced Materials Research | 2011
Moola Mohan Reddy; Khaled Abou-El-Hossein; Alexander Gorin
This experimental research work attempted to use End milling on Machinable Glass Ceramic (MGC) using micro grain solid carbide end mill under dry conditions. The predictive Surface Roughness model has been developed in terms of Spindle speed, Feed rate and axial depth of cut by Response Surface Methodology (RSM). The influence of each milling parameter analyzed and results showed that axial depth of cut was the most dominant variable. The adequacy of the model has been verified by ANOVA.
Journal of Physics: Conference Series | 2017
Peter Babatunde Odedeyi; Khaled Abou-El-Hossein; Muhammad M. Liman
Stainless steel 316 is a difficult-to-machine iron-based alloys that contain minimum of about 12% of chromium commonly used in marine and aerospace industry. This paper presents an experimental study of the tool wear propagation variations in the end milling of stainless steel 316 with coated carbide inserts. The milling tests were conducted at three different cutting speeds while feed rate and depth of cut were at (0.02, 0.06 and 01) mm/rev and (1, 2 and 3) mm, respectively. The cutting tool used was TiAlN-PVD-multi-layered coated carbides. The effects of cutting speed, cutting tool coating top layer and workpiece material were investigated on the tool life. The results showed that cutting speed significantly affected the machined flank wears values. With increasing cutting speed, the flank wear values decreased. The experimental results showed that significant flank wear was the major and predominant failure mode affecting the tool life.
Proceedings of SPIE | 2015
Zwelinzima Mkoko; Khaled Abou-El-Hossein
Optical aluminium alloys such as 6061-T6 are traditionally used in ultra-high precision manufacturing for making optical mirrors for aerospace and other applications. However, the optics industry has recently witnessed the development of more advanced optical aluminium grades that are capable of addressing some of the issues encountered when turning with single-point natural monocrystalline diamond cutters. The advent of rapidly solidified aluminium (RSA) grades has generally opened up new possibilities for ultra-high precision manufacturing of optical components. In this study, experiments were conducted with single-point diamond cutters on rapidly solidified aluminium RSA 443 material. The objective of this study is to observe the effects of depth of cut and feed rate at a fixed rotational speed on the tool wear rate and resulting surface roughness of diamond turned specimens. This is done to gain further understanding of the rate of wear on the diamond cutters versus the surface texture generated on the RSA 443 material. The diamond machining experiments yielded machined surfaces which are less reflective but with consistent surface roughness values. Cutting tools were observed for wear through scanning microscopy; relatively low wear pattern was evident on the diamond tool edge. The highest tool wear were obtained at higher depth of cut and increased feed rate.