Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Khaled Barakat is active.

Publication


Featured researches published by Khaled Barakat.


Journal of Molecular Graphics & Modelling | 2010

Ensemble-based virtual screening reveals dual-inhibitors for the p53–MDM2/MDMX interactions

Khaled Barakat; Jonathan Y. Mane; Douglas E. Friesen; Jack A. Tuszynski

The p53 protein, a guardian of the genome, is inactivated by mutations or deletions in approximately half of human tumors. While in the rest of human tumors, p53 is expressed in wild-type form, yet it is inhibited by over-expression of its cellular regulators MDM2 and MDMX proteins. Although the p53-binding sites within the MDMX and MDM2 proteins are closely related, known MDM2 small-molecule inhibitors have been shown experimentally not to bind to its homolog, MDMX. As a result, the activity of these inhibitors including Nutlin3 is compromised in tumor cells over-expressing MDMX, preventing these compounds from fully activating the p53 protein. Here, we applied the relaxed complex scheme (RCS) to allow for the full receptor flexibility in screening for dual-inhibitors that can mutually antagonize the two p53-regulator proteins. First, we filtered the NCI diversity set, DrugBank compounds and a derivative library for MDM2-inhibitors against 28 dominant MDM2-conformations. Then, we screened the MDM2 top hits against the binding site of p53 within the MDMX target. Results described herein identify a set of compounds that have been computationally predicted to ultimately activate the p53 pathway in tumor cells retaining the wild-type protein.


Drug Discovery Today | 2017

Molecular dynamics-driven drug discovery: leaping forward with confidence

Aravindhan Ganesan; Michelle L. Coote; Khaled Barakat

Given the significant time and financial costs of developing a commercial drug, it remains important to constantly reform the drug discovery pipeline with novel technologies that can narrow the candidates down to the most promising lead compounds for clinical testing. The past decade has witnessed tremendous growth in computational capabilities that enable in silico approaches to expedite drug discovery processes. Molecular dynamics (MD) has become a particularly important tool in drug design and discovery. From classical MD methods to more sophisticated hybrid classical/quantum mechanical (QM) approaches, MD simulations are now able to offer extraordinary insights into ligand-receptor interactions. In this review, we discuss how the applications of MD approaches are significantly transforming current drug discovery and development efforts.


Molecular Pharmacology | 2013

Small Molecule Inhibitors of ERCC1-XPF Protein-Protein Interaction Synergize Alkylating Agents in Cancer Cells

Lars Petter Jordheim; Khaled Barakat; Laurence Heinrich-Balard; Eva-Laure Matera; Emeline Cros-Perrial; Karima Bouledrak; Rana El Sabeh; Rolando Perez-Pineiro; David S. Wishart; Richard A. Cohen; Jack A. Tuszynski; Charles Dumontet

The benefit of cancer chemotherapy based on alkylating agents is limited because of the action of DNA repair enzymes, which mitigate the damage induced by these agents. The interaction between the proteins ERCC1 and XPF involves two major components of the nucleotide excision repair pathway. Here, novel inhibitors of this interaction were identified by virtual screening based on available structures with use of the National Cancer Institute diversity set and a panel of DrugBank small molecules. Subsequently, experimental validation of the in silico screening was undertaken. Top hits were evaluated on A549 and HCT116 cancer cells. In particular, the compound labeled NSC 130813 [4-[(6-chloro-2-methoxy-9-acridinyl)amino]-2-[(4-methyl-1-piperazinyl)methyl]] was shown to act synergistically with cisplatin and mitomycin C; to increase UVC-mediated cytotoxicity; to modify DNA repair as indicated by the staining of phosphorylated H2AX; and to disrupt interaction between ERCC1 and XPF in cells. In addition, using the Biacore technique, we showed that this compound interacts with the domain of XPF responsible for interaction with ERCC1. This study shows that small molecules targeting the protein-protein interaction of ERCC1 and XPF can be developed to enhance the effects of alkylating agents on cancer cells.


PLOS ONE | 2012

Computational Predictions of Volatile Anesthetic Interactions with the Microtubule Cytoskeleton: Implications for Side Effects of General Anesthesia

Travis J. A. Craddock; Marc St. George; Holly Freedman; Khaled Barakat; Sambasivarao Damaraju; Stuart R. Hameroff; Jack A. Tuszynski

The cytoskeleton is essential to cell morphology, cargo trafficking, and cell division. As the neuronal cytoskeleton is extremely complex, it is no wonder that a startling number of neurodegenerative disorders (including but not limited to Alzheimer’s disease, Parkinson’s disease and Huntington’s disease) share the common feature of a dysfunctional neuronal cytoskeleton. Recently, concern has been raised about a possible link between anesthesia, post-operative cognitive dysfunction, and the exacerbation of neurodegenerative disorders. Experimental investigations suggest that anesthetics bind to and affect cytoskeletal microtubules, and that anesthesia-related cognitive dysfunction involves microtubule instability, hyper-phosphorylation of the microtubule-associated protein tau, and tau separation from microtubules. However, exact mechanisms are yet to be identified. In this paper the interaction of anesthetics with the microtubule subunit protein tubulin is investigated using computer-modeling methods. Homology modeling, molecular dynamics simulations and surface geometry techniques were used to determine putative binding sites for volatile anesthetics on tubulin. This was followed by free energy based docking calculations for halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the tubulin body, and C-terminal regions for specific tubulin isotypes. Locations of the putative binding sites, halothane binding energies and the relation to cytoskeleton function are reported in this paper.


PLOS ONE | 2012

Virtual Screening and Biological Evaluation of Inhibitors Targeting the XPA-ERCC1 Interaction

Khaled Barakat; Lars Petter Jordheim; Rolando Perez-Pineiro; David S. Wishart; Charles Dumontet; Jack A. Tuszynski

Background Nucleotide excision repair (NER) removes many types of DNA lesions including those induced by UV radiation and platinum-based therapy. Resistance to platinum-based therapy correlates with high expression of ERCC1, a major element of the NER machinery. The interaction between ERCC1 and XPA is essential for a successful NER function. Therefore, one way to regulate NER is by inhibiting the activity of ERCC1 and XPA. Methodology/Principal Findings Here we continued our earlier efforts aimed at the identification and characterization of novel inhibitors of the ERCC1-XPA interaction. We used a refined virtual screening approach combined with a biochemical and biological evaluation of the compounds for their ability to interact with ERCC1 and to sensitize cells to UV radiation. Our findings reveal a new validated ERCC1-XPA inhibitor that significantly sensitized colon cancer cells to UV radiation indicating a strong inhibition of the ERCC1-XPA interaction. Conclusions NER is a major factor in acquiring resistance to platinum-based therapy. Regulating the NER pathway has the potential of improving the efficacy of platinum treatments. One approach that we followed is to inhibit the essential interaction between the two NER elements, ERCC1 and XPA. Here, we performed virtual screening against the ERCC1-XPA interaction and identified novel inhibitors that block the XPA-ERCC1 binding. The identified inhibitors significantly sensitized colon cancer cells to UV radiation indicating a strong inhibition of the ERCC1-XPA interaction.


PLOS Pathogens | 2014

IL-28B is a Key Regulator of B- and T-Cell Vaccine Responses against Influenza

Adrian Egli; Deanna M. Santer; Daire O'Shea; Khaled Barakat; Mohammedyaseen Syedbasha; Madeleine Vollmer; Aliyah Baluch; Rakesh Bhat; Jody Groenendyk; Michael A. Joyce; Luiz F. Lisboa; Brad S. Thomas; Manuel Battegay; Nina Khanna; Thomas Mueller; D. Lorne Tyrrell; Michael Houghton; Atul Humar; Deepali Kumar

Influenza is a major cause of morbidity and mortality in immunosuppressed persons, and vaccination often confers insufficient protection. IL-28B, a member of the interferon (IFN)-λ family, has variable expression due to single nucleotide polymorphisms (SNPs). While type-I IFNs are well known to modulate adaptive immunity, the impact of IL-28B on B- and T-cell vaccine responses is unclear. Here we demonstrate that the presence of the IL-28B TG/GG genotype (rs8099917, minor-allele) was associated with increased seroconversion following influenza vaccination (OR 1.99 p = 0.038). Also, influenza A (H1N1)-stimulated T- and B-cells from minor-allele carriers showed increased IL-4 production (4-fold) and HLA-DR expression, respectively. In vitro, recombinant IL-28B increased Th1-cytokines (e.g. IFN-γ), and suppressed Th2-cytokines (e.g. IL-4, IL-5, and IL-13), H1N1-stimulated B-cell proliferation (reduced 70%), and IgG-production (reduced>70%). Since IL-28B inhibited B-cell responses, we designed antagonistic peptides to block the IL-28 receptor α-subunit (IL28RA). In vitro, these peptides significantly suppressed binding of IFN-λs to IL28RA, increased H1N1-stimulated B-cell activation and IgG-production in samples from healthy volunteers (2-fold) and from transplant patients previously unresponsive to vaccination (1.4-fold). Together, these findings identify IL-28B as a key regulator of the Th1/Th2 balance during influenza vaccination. Blockade of IL28RA offers a novel strategy to augment vaccine responses.


Journal of Molecular Graphics & Modelling | 2011

Relaxed complex scheme suggests novel inhibitors for the lyase activity of DNA polymerase beta

Khaled Barakat; Jack A. Tuszynski

DNA polymerase beta (pol β), the error-prone polymerase of base excision repair, plays a significant role in chemotherapeutic agent resistance. Its over expression reduces the efficacy of anticancer drug therapies including ionizing radiation, bleomycin, monofunctional alkylating agents and cisplatin. Small-scale studies on different types of cancer showed that pol β is mutated in approximately 30% of tumors. These mutations further lower pol β fidelity in DNA synthesis exposing the genome to serious mutations. These findings suggested pol β as a promising therapeutic target for cancer treatment. More than 60 pol β-inhibitors have been identified so far, however, most of them are either not potent or specific enough to become a drug. Here, we applied the relaxed complex scheme virtual screening (RCSVS) to allow for the full receptor flexibility in filtering the NCI diversity set, DrugBank compounds and a library of ∼ 9000 fragmental compounds for novel pol β inhibitors. In this procedure we screened the set of ∼ 12,500 compounds against an ensemble of 11 dominant-receptor structures representing the essential backbone dynamics of the 8 kDa domain of pol β. Our results predicted new compounds that can bind with higher affinity to the lyase active site compared to pamoic acid (PA), a well-known inhibitor of DNA pol β.


Journal of Chemical Information and Modeling | 2015

A Refined Model of the HCV NS5A protein bound to daclatasvir explains drug-resistant mutations and activity against divergent genotypes.

Khaled Barakat; Anwar Anwar-Mohamed; Jack A. Tuszynski; Morris J. Robins; D. Lorne Tyrrell; Michael Houghton

Many direct-acting antiviral agents (DAAs) that selectively block hepatitis C virus (HCV) replication are currently under development. Among these agents is Daclatasvir, a first-in-class inhibitor targeting the NS5A viral protein. Although Daclatasvir is the most potent HCV antiviral molecule yet developed, its binding location and mode of binding remain unknown. The drug exhibits a low barrier to resistance mutations, particularly in genotype 1 viruses, but its efficacy against other genotypes is unclear. Using state-of-the-art modeling techniques combined with the massive computational power of Blue Gene/Q, we identified the atomic interactions of Daclatasvir within NS5A for different HCV genotypes and for several reported resistant mutations. The proposed model is the first to reveal the detailed binding mode of Daclatasvir. It also provides a tool to facilitate design of second generation drugs, which may confer less resistance and/or broader activity against HCV.


Toxicology Letters | 2014

A human ether-á-go-go-related (hERG) ion channel atomistic model generated by long supercomputer molecular dynamics simulations and its use in predicting drug cardiotoxicity

Anwar Anwar-Mohamed; Khaled Barakat; Rakesh Bhat; Sergei Y. Noskov; D. Lorne Tyrrell; Jack A. Tuszynski; Michael Houghton

Acquired cardiac long QT syndrome (LQTS) is a frequent drug-induced toxic event that is often caused through blocking of the human ether-á-go-go-related (hERG) K(+) ion channel. This has led to the removal of several major drugs post-approval and is a frequent cause of termination of clinical trials. We report here a computational atomistic model derived using long molecular dynamics that allows sensitive prediction of hERG blockage. It identified drug-mediated hERG blocking activity of a test panel of 18 compounds with high sensitivity and specificity and was experimentally validated using hERG binding assays and patch clamp electrophysiological assays. The model discriminates between potent, weak, and non-hERG blockers and is superior to previous computational methods. This computational model serves as a powerful new tool to predict hERG blocking thus rendering drug development safer and more efficient. As an example, we show that a drug that was halted recently in clinical development because of severe cardiotoxicity is a potent inhibitor of hERG in two different biological assays which could have been predicted using our new computational model.


PLOS ONE | 2011

Effects of temperature on the p53-DNA binding interactions and their dynamical behavior: comparing the wild type to the R248Q mutant.

Khaled Barakat; Bilkiss B. Issack; Maria Stepanova; Jack A. Tuszynski

Background The protein p53 plays an active role in the regulation of cell cycle. In about half of human cancers, the protein is inactivated by mutations located primarily in its DNA-binding domain. Interestingly, a number of these mutations possess temperature-induced DNA-binding characteristics. A striking example is the mutation of Arg248 into glutamine or tryptophan. These mutants are defective for binding to DNA at 310 K although they have been shown to bind specifically to several p53 response elements at sub-physiological temperatures (298–306 K). Methodology/Principal Findings This important experimental finding motivated us to examine the effects of temperature on the structure and configuration of R248Q mutant and compare it to the wild type protein. Our aim is to determine how and where structural changes of mutant variants take place due to temperature changes. To answer these questions, we compared the mutant to the wild-type proteins from two different aspects. First, we investigated the systems at the atomistic level through their DNA-binding affinity, hydrogen bond networks and spatial distribution of water molecules. Next, we assessed changes in their long-lived conformational motions at the coarse-grained level through the collective dynamics of their side-chain and backbone atoms separately. Conclusions The experimentally observed effect of temperature on the DNA-binding properties of p53 is reproduced. Analysis of atomistic and coarse-grained data reveal that changes in binding are determined by a few key residues and provide a rationale for the mutant-loss of binding at physiological temperatures. The findings can potentially enable a rescue strategy for the mutant structure.

Collaboration


Dive into the Khaled Barakat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Gentile

Information Technology University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge