Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Khaled M. Elleithy is active.

Publication


Featured researches published by Khaled M. Elleithy.


Sensors | 2014

Energy-Efficient Boarder Node Medium Access Control Protocol for Wireless Sensor Networks

Abdul Razaque; Khaled M. Elleithy

This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN), which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS), which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM) model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS), which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi-synchronous feature with a low duty cycle, which is advantageous for reducing the latency and energy consumption for several WSN application areas to improve the throughput. BN-MAC uses a unique window slot size to enhance the contention resolution issue for improved throughput. BN-MAC also prefers to communicate within a one-hop destination using Anycast, which maintains load balancing to maintain network reliability. BN-MAC is introduced with the goal of supporting four major application areas: monitoring and behavioral areas, controlling natural disasters, human-centric applications, and tracking mobility and static home automation devices from remote places. These application areas require a congestion-free mobility-supported MAC protocol to guarantee reliable data delivery. BN-MAC was evaluated using network simulator-2 (ns2) and compared with other hybrid MAC protocols, such as Zebra medium access control (Z-MAC), advertisement-based MAC (A-MAC), Speck-MAC, adaptive duty cycle SMAC (ADC-SMAC), and low-power real-time medium access control (LPR-MAC). The simulation results indicate that BN-MAC is a robust and energy-efficient protocol that outperforms other hybrid MAC protocols in the context of quality of service (QoS) parameters, such as energy consumption, latency, throughput, channel access time, successful delivery rate, coverage efficiency, and average duty cycle.


IEEE Sensors Journal | 2016

Trajectory Planning and Collision Avoidance Algorithm for Mobile Robotics System

Marwah Almasri; Abrar Alajlan; Khaled M. Elleithy

The field of autonomous mobile robotics has recently gained many researchers interests. Due to the specific needs required by various applications of mobile robot systems, especially in navigation, designing a real time obstacle avoidance and path following robot system has become the backbone of controlling robots in unknown environments. Therefore, an efficient collision avoidance and path following methodology is needed to develop an intelligent and effective autonomous mobile robot system. This paper introduces a new technique for line following and collision avoidance in the mobile robotic systems. The proposed technique relies on the use of low-cost infrared sensors, and involves a reasonable level of calculations, so that it can be easily used in real-time control applications. The simulation setup is implemented on multiple scenarios to show the ability of the robot to follow a path, detect obstacles, and navigate around them to avoid collision. It also shows that the robot has been successfully following very congested curves and has avoided any obstacle that emerged on its path. Webots simulator was used to validate the effectiveness of the proposed technique.


Wireless Personal Communications | 2016

Rogue Access Point Detection: Taxonomy, Challenges, and Future Directions

Bandar Alotaibi; Khaled M. Elleithy

Wireless Local Area Networks (WLANs) are increasingly integrated into our daily lives. Access Points (APs) are an integral part of the WLAN infrastructure, as they are responsible for coordinating wireless users and connecting them to the wired side of the network and, eventually, to the Internet. APs are deployed everywhere, from airports and shopping malls to coffee shops and hospitals, to provide Internet connectivity. One of the most serious security problems encountered by WLAN users is the existence of Rogue Access Points (RAPs). This article classifies existing solutions, identifies vulnerabilities, and suggests future directions for research into these RAPs. The ultimate objective is to classify existing detection techniques and find new RAP types that have not been classified by the research community. The literature typically categorizes Evil-twin, Unauthorized, Compromised, and Improperly Configured RAPs. Two other types have largely been abandoned by researchers, but can be classified as Denial of Service RAP attacks. These are deauthentication/disassociation attacks targeting wireless users, and the forging of the first message in a four-way handshake.


Multimedia Tools and Applications | 2017

Compressed and raw video steganography techniques: a comprehensive survey and analysis

Ramadhan J. Mstafa; Khaled M. Elleithy

In the last two decades, the science of covertly concealing and communicating data has acquired tremendous significance due to the technological advancement in communication and digital content. Steganography is the art of concealing secret data in a particular interactive media transporter, e.g., text, audio, image, and video data in order to build a covert communication between authorized parties. Nowadays, video steganography techniques have become important in many video-sharing and social networking applications such as Livestreaming, YouTube, Twitter, and Facebook because of the noteworthy development of advanced video over the Internet. The performance of any steganographic method ultimately relies on the imperceptibility, hiding capacity, and robustness. In the past decade, many video steganography methods have been proposed; however, the literature lacks of sufficient survey articles that discuss all techniques. This paper presents a comprehensive study and analysis of numerous cutting edge video steganography methods and their performance evaluations from literature. Both compressed and raw video steganography methods are surveyed. In the compressed domain, video steganography techniques are categorized according to the video compression stages as venues for data hiding such as intra frame prediction, inter frame prediction, motion vectors, transformed and quantized coefficients, and entropy coding. On the other hand, raw video steganography methods are classified into spatial and transform domains. This survey suggests current research directions and recommendations to improve on existing video steganography techniques.


Sensors | 2017

Sensor-Based Assistive Devices for Visually-Impaired People: Current Status, Challenges, and Future Directions

Wafa Elmannai; Khaled M. Elleithy

The World Health Organization (WHO) reported that there are 285 million visually-impaired people worldwide. Among these individuals, there are 39 million who are totally blind. There have been several systems designed to support visually-impaired people and to improve the quality of their lives. Unfortunately, most of these systems are limited in their capabilities. In this paper, we present a comparative survey of the wearable and portable assistive devices for visually-impaired people in order to show the progress in assistive technology for this group of people. Thus, the contribution of this literature survey is to discuss in detail the most significant devices that are presented in the literature to assist this population and highlight the improvements, advantages, disadvantages, and accuracy. Our aim is to address and present most of the issues of these systems to pave the way for other researchers to design devices that ensure safety and independent mobility to visually-impaired people.


IEEE Access | 2017

A Robust and Secure Video Steganography Method in DWT-DCT Domains Based on Multiple Object Tracking and ECC

Ramadhan J. Mstafa; Khaled M. Elleithy; Eman Abdelfattah

Over the past few decades, the art of secretly embedding and communicating digital data has gained enormous attention because of the technological development in both digital contents and communication. The imperceptibility, hiding capacity, and robustness against attacks are three main requirements that any video steganography method should take into consideration. In this paper, a robust and secure video steganographic algorithm in discrete wavelet transform (DWT) and discrete cosine transform (DCT) domains based on the multiple object tracking (MOT) algorithm and error correcting codes is proposed. The secret message is preprocessed by applying both Hamming and Bose, Chaudhuri, and Hocquenghem codes for encoding the secret data. First, motion-based MOT algorithm is implemented on host videos to distinguish the regions of interest in the moving objects. Then, the data hiding process is performed by concealing the secret message into the DWT and DCT coefficients of all motion regions in the video depending on foreground masks. Our experimental results illustrate that the suggested algorithm not only improves the embedding capacity and imperceptibility but also enhances its security and robustness by encoding the secret message and withstanding against various attacks.


Sensors | 2016

A New MAC Address Spoofing Detection Technique Based on Random Forests

Bandar Alotaibi; Khaled M. Elleithy

Media access control (MAC) addresses in wireless networks can be trivially spoofed using off-the-shelf devices. The aim of this research is to detect MAC address spoofing in wireless networks using a hard-to-spoof measurement that is correlated to the location of the wireless device, namely the received signal strength (RSS). We developed a passive solution that does not require modification for standards or protocols. The solution was tested in a live test-bed (i.e., a wireless local area network with the aid of two air monitors acting as sensors) and achieved 99.77%, 93.16% and 88.38% accuracy when the attacker is 8–13 m, 4–8 m and less than 4 m away from the victim device, respectively. We implemented three previous methods on the same test-bed and found that our solution outperforms existing solutions. Our solution is based on an ensemble method known as random forests.


Sensors | 2017

Performance and Challenges of Service-Oriented Architecture for Wireless Sensor Networks

Remah Alshinina; Khaled M. Elleithy

Wireless Sensor Networks (WSNs) have become essential components for a variety of environmental, surveillance, military, traffic control, and healthcare applications. These applications face critical challenges such as communication, security, power consumption, data aggregation, heterogeneities of sensor hardware, and Quality of Service (QoS) issues. Service-Oriented Architecture (SOA) is a software architecture that can be integrated with WSN applications to address those challenges. The SOA middleware bridges the gap between the high-level requirements of different applications and the hardware constraints of WSNs. This survey explores state-of-the-art approaches based on SOA and Service-Oriented Middleware (SOM) architecture that provide solutions for WSN challenges. The categories of this paper are based on approaches of SOA with and without middleware for WSNs. Additionally, features of SOA and middleware architectures for WSNs are compared to achieve more robust and efficient network performance. Design issues of SOA middleware for WSNs and its characteristics are also highlighted. The paper concludes with future research directions in SOM architecture to meet all requirements of emerging application of WSNs.


Sensors | 2017

Efficient Actor Recovery Paradigm for Wireless Sensor and Actor Networks

Reem Mahjoub; Khaled M. Elleithy

The actor nodes are the spine of wireless sensor and actor networks (WSANs) that collaborate to perform a specific task in an unverified and uneven environment. Thus, there is a possibility of high failure rate in such unfriendly scenarios due to several factors such as power consumption of devices, electronic circuit failure, software errors in nodes or physical impairment of the actor nodes and inter-actor connectivity problem. Therefore, it is extremely important to discover the failure of a cut-vertex actor and network-disjoint in order to improve the Quality-of-Service (QoS). In this paper, we propose an Efficient Actor Recovery (EAR) paradigm to guarantee the contention-free traffic-forwarding capacity. The EAR paradigm consists of a Node Monitoring and Critical Node Detection (NMCND) algorithm that monitors the activities of the nodes to determine the critical node. In addition, it replaces the critical node with backup node prior to complete node-failure which helps balancing the network performance. The packets are handled using Network Integration and Message Forwarding (NIMF) algorithm that determines the source of forwarding the packets; either from actor or sensor. This decision-making capability of the algorithm controls the packet forwarding rate to maintain the network for a longer time. Furthermore, for handling the proper routing strategy, Priority-Based Routing for Node Failure Avoidance (PRNFA) algorithm is deployed to decide the priority of the packets to be forwarded based on the significance of information available in the packet. To validate the effectiveness of the proposed EAR paradigm, the proposed algorithms were tested using OMNET++ simulation.


Sensors | 2016

An Optimized Hidden Node Detection Paradigm for Improving the Coverage and Network Efficiency in Wireless Multimedia Sensor Networks.

Adwan Alanazi; Khaled M. Elleithy

Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND) paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node– continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2). The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches.

Collaboration


Dive into the Khaled M. Elleithy's collaboration.

Top Co-Authors

Avatar

Abrar Alajlan

University of Bridgeport

View shared research outputs
Top Co-Authors

Avatar

Abdul Razaque

University of Bridgeport

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marwah Almasri

University of Bridgeport

View shared research outputs
Top Co-Authors

Avatar

Miad Faezipour

University of Bridgeport

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Varun Pande

University of Bridgeport

View shared research outputs
Top Co-Authors

Avatar

Wafa Elmannai

University of Bridgeport

View shared research outputs
Researchain Logo
Decentralizing Knowledge