Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Khaled M. Hazzouri is active.

Publication


Featured researches published by Khaled M. Hazzouri.


Nature Genetics | 2013

The Capsella rubella genome and the genomic consequences of rapid mating system evolution

Tanja Slotte; Khaled M. Hazzouri; J. Arvid Ågren; Daniel Koenig; Florian Maumus; Ya-Long Guo; Kim A. Steige; Adrian E. Platts; Juan S. Escobar; L. Killian Newman; Wei Wang; Terezie Mandáková; Emilio Vello; Lisa M. Smith; Stefan R. Henz; Joshua G. Steffen; Shohei Takuno; Yaniv Brandvain; Graham Coop; Peter Andolfatto; Tina T. Hu; Mathieu Blanchette; Richard M. Clark; Hadi Quesneville; Magnus Nordborg; Brandon S. Gaut; Martin A. Lysak; Jerry Jenkins; Jane Grimwood; Jarrod Chapman

The shift from outcrossing to selfing is common in flowering plants, but the genomic consequences and the speed at which they emerge remain poorly understood. An excellent model for understanding the evolution of self fertilization is provided by Capsella rubella, which became self compatible <200,000 years ago. We report a C. rubella reference genome sequence and compare RNA expression and polymorphism patterns between C. rubella and its outcrossing progenitor Capsella grandiflora. We found a clear shift in the expression of genes associated with flowering phenotypes, similar to that seen in Arabidopsis, in which self fertilization evolved about 1 million years ago. Comparisons of the two Capsella species showed evidence of rapid genome-wide relaxation of purifying selection in C. rubella without a concomitant change in transposable element abundance. Overall we document that the transition to selfing may be typified by parallel shifts in gene expression, along with a measurable reduction of purifying selection.


Nature Genetics | 2013

An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions

Annabelle Haudry; Adrian E. Platts; Emilio Vello; Douglas R. Hoen; Mickael Leclercq; Robert J. Williamson; Ewa Forczek; Zoé Joly-Lopez; Joshua G. Steffen; Khaled M. Hazzouri; Ken Dewar; John R. Stinchcombe; Daniel J. Schoen; Xiaowu Wang; Jeremy Schmutz; Christopher D. Town; Patrick P. Edger; J. Chris Pires; Karen S. Schumaker; David E. Jarvis; Terezie Mandáková; Martin A. Lysak; Erik van den Bergh; M. Eric Schranz; Paul M. Harrison; Alan M. Moses; Thomas E. Bureau; Stephen I. Wright; Mathieu Blanchette

Despite the central importance of noncoding DNA to gene regulation and evolution, understanding of the extent of selection on plant noncoding DNA remains limited compared to that of other organisms. Here we report sequencing of genomes from three Brassicaceae species (Leavenworthia alabamica, Sisymbrium irio and Aethionema arabicum) and their joint analysis with six previously sequenced crucifer genomes. Conservation across orthologous bases suggests that at least 17% of the Arabidopsis thaliana genome is under selection, with nearly one-quarter of the sequence under selection lying outside of coding regions. Much of this sequence can be localized to approximately 90,000 conserved noncoding sequences (CNSs) that show evidence of transcriptional and post-transcriptional regulation. Population genomics analyses of two crucifer species, A. thaliana and Capsella grandiflora, confirm that most of the identified CNSs are evolving under medium to strong purifying selection. Overall, these CNSs highlight both similarities and several key differences between the regulatory DNA of plants and other species.


Molecular Biology and Evolution | 2010

Genome-Wide Evidence for Efficient Positive and Purifying Selection in Capsella grandiflora, a Plant Species with a Large Effective Population Size

Tanja Slotte; John Paul Foxe; Khaled M. Hazzouri; Stephen I. Wright

Recent studies comparing genome-wide polymorphism and divergence in Drosophila have found evidence for a surprisingly high proportion of adaptive amino acid fixations, but results for other taxa are mixed. In particular, few studies have found convincing evidence for adaptive amino acid substitution in plants. To assess the generality of this finding, we have sequenced 257 loci in the outcrossing crucifer Capsella grandiflora, which has a large effective population size and low population structure. Using a new method that jointly infers selective and demographic effects, we estimate that 40% of amino acid substitutions were fixed by positive selection in this species, and we also infer a low proportion of slightly deleterious amino acid mutations. We contrast these estimates with those for a similar data set from the closely related Arabidopsis thaliana and find significantly higher rates of adaptive evolution and fewer nearly neutral mutations in C. grandiflora. In agreement with results for other taxa, genes involved in reproduction show the strongest evidence for positive selection in C. grandiflora. Taken together, these results imply that both positive and purifying selection are more effective in C. grandiflora than in A. thaliana, consistent with the contrasting demographic history and effective population sizes of these species.


Evolution | 2012

GENETIC ARCHITECTURE AND ADAPTIVE SIGNIFICANCE OF THE SELFING SYNDROME IN CAPSELLA

Tanja Slotte; Khaled M. Hazzouri; David L. Stern; Peter Andolfatto; Stephen I. Wright

The transition from outcrossing to predominant self‐fertilization is one of the most common evolutionary transitions in flowering plants. This shift is often accompanied by a suite of changes in floral and reproductive characters termed the selfing syndrome. Here, we characterize the genetic architecture and evolutionary forces underlying evolution of the selfing syndrome in Capsella rubella following its recent divergence from the outcrossing ancestor C. grandiflora. We conduct genotyping by multiplexed shotgun sequencing and map floral and reproductive traits in a large (N= 550) F2 population. Our results suggest that in contrast to previous studies of the selfing syndrome, changes at a few loci, some with major effects, have shaped the evolution of the selfing syndrome in Capsella. The directionality of QTL effects, as well as population genetic patterns of polymorphism and divergence at 318 loci, is consistent with a history of directional selection on the selfing syndrome. Our study is an important step toward characterizing the genetic basis and evolutionary forces underlying the evolution of the selfing syndrome in a genetically accessible model system.


PLOS Genetics | 2013

Genomic identification of founding haplotypes reveals the history of the selfing species Capsella rubella.

Yaniv Brandvain; Tanja Slotte; Khaled M. Hazzouri; Stephen I. Wright; Graham Coop

The shift from outcrossing to self-fertilization is among the most common evolutionary transitions in flowering plants. Until recently, however, a genome-wide view of this transition has been obscured by both a dearth of appropriate data and the lack of appropriate population genomic methods to interpret such data. Here, we present a novel population genomic analysis detailing the origin of the selfing species, Capsella rubella, which recently split from its outcrossing sister, Capsella grandiflora. Due to the recency of the split, much of the variation within C. rubella is also found within C. grandiflora. We can therefore identify genomic regions where two C. rubella individuals have inherited the same or different segments of ancestral diversity (i.e. founding haplotypes) present in C. rubellas founder(s). Based on this analysis, we show that C. rubella was founded by multiple individuals drawn from a diverse ancestral population closely related to extant C. grandiflora, that drift and selection have rapidly homogenized most of this ancestral variation since C. rubellas founding, and that little novel variation has accumulated within this time. Despite the extensive loss of ancestral variation, the approximately 25% of the genome for which two C. rubella individuals have inherited different founding haplotypes makes up roughly 90% of the genetic variation between them. To extend these findings, we develop a coalescent model that utilizes the inferred frequency of founding haplotypes and variation within founding haplotypes to estimate that C. rubella was founded by a potentially large number of individuals between 50 and 100 kya, and has subsequently experienced a twenty-fold reduction in its effective population size. As population genomic data from an increasing number of outcrossing/selfing pairs are generated, analyses like the one developed here will facilitate a fine-scaled view of the evolutionary and demographic impact of the transition to self-fertilization.


Nature Genetics | 2016

Domestication history and geographical adaptation inferred from a SNP map of African rice

Rachel S. Meyer; Jae Young Choi; Michelle Sanches; Anne Plessis; Jonathan M. Flowers; Junrey C. Amas; Katherine Dorph; Annie Barretto; Briana L. Gross; Dorian Q. Fuller; Isaac Kofi Bimpong; Marie Noelle Ndjiondjop; Khaled M. Hazzouri; Glenn B. Gregorio; Michael D. Purugganan

African rice (Oryza glaberrima Steud.) is a cereal crop species closely related to Asian rice (Oryza sativa L.) but was independently domesticated in West Africa ∼3,000 years ago. African rice is rarely grown outside sub-Saharan Africa but is of global interest because of its tolerance to abiotic stresses. Here we describe a map of 2.32 million SNPs of African rice from whole-genome resequencing of 93 landraces. Population genomic analysis shows a population bottleneck in this species that began ∼13,000–15,000 years ago with effective population size reaching its minimum value ∼3,500 years ago, suggesting a protracted period of population size reduction likely commencing with predomestication management and/or cultivation. Genome-wide association studies (GWAS) for six salt tolerance traits identify 11 significant loci, 4 of which are within ∼300 kb of genomic regions that possess signatures of positive selection, suggesting adaptive geographical divergence for salt tolerance in this species.


PLOS Genetics | 2014

Evidence for widespread positive and negative selection in coding and conserved noncoding regions of Capsella grandiflora.

Robert J. Williamson; Emily B. Josephs; Adrian E. Platts; Khaled M. Hazzouri; Annabelle Haudry; Mathieu Blanchette; Stephen I. Wright

The extent that both positive and negative selection vary across different portions of plant genomes remains poorly understood. Here, we sequence whole genomes of 13 Capsella grandiflora individuals and quantify the amount of selection across the genome. Using an estimate of the distribution of fitness effects, we show that selection is strong in coding regions, but weak in most noncoding regions, with the exception of 5′ and 3′ untranslated regions (UTRs). However, estimates of selection on noncoding regions conserved across the Brassicaceae family show strong signals of selection. Additionally, we see reductions in neutral diversity around functional substitutions in both coding and conserved noncoding regions, indicating recent selective sweeps at these sites. Finally, using expression data from leaf tissue we show that genes that are more highly expressed experience stronger negative selection but comparable levels of positive selection to lowly expressed genes. Overall, we observe widespread positive and negative selection in coding and regulatory regions, but our results also suggest that both positive and negative selection on plant noncoding sequence are considerably rarer than in animal genomes.


Nature Communications | 2015

Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop

Khaled M. Hazzouri; Jonathan M. Flowers; Hendrik J. Visser; Hussam S. M. Khierallah; Ulises Rosas; Gina M. Pham; Rachel S. Meyer; Caryn K. Johansen; Zoë A. Fresquez; Khaled Masmoudi; Nadia Haider; Nabila El Kadri; Youssef Idaghdour; Joel A. Malek; Deborah Thirkhill; Ghulam Sarwar Markhand; Robert R. Krueger; Abdelouahhab Zaid; Michael D. Purugganan

Date palms (Phoenix dactylifera) are the most significant perennial crop in arid regions of the Middle East and North Africa. Here, we present a comprehensive catalogue of approximately seven million single nucleotide polymorphisms in date palms based on whole genome re-sequencing of a collection of 62 cultivars. Population structure analysis indicates a major genetic divide between North Africa and the Middle East/South Asian date palms, with evidence of admixture in cultivars from Egypt and Sudan. Genome-wide scans for selection suggest at least 56 genomic regions associated with selective sweeps that may underlie geographic adaptation. We report candidate mutations for trait variation, including nonsense polymorphisms and presence/absence variation in gene content in pathways for key agronomic traits. We also identify a copia-like retrotransposon insertion polymorphism in the R2R3 myb-like orthologue of the oil palm virescens gene associated with fruit colour variation. This analysis documents patterns of post-domestication diversification and provides a genomic resource for this economically important perennial tree crop.


Evolution | 2012

Comparative population genomics in Collinsia sister species reveals evidence for reduced effective population size, relaxed selection, and evolution of biased gene conversion with an ongoing mating system shift.

Khaled M. Hazzouri; Juan S. Escobar; Rob W. Ness; L. Killian Newman; April M. Randle; Susan Kalisz; Stephen I. Wright

Selfing species experience reduced effective recombination rates and effective population size, which can lead to reductions in polymorphism and the efficacy of natural selection. Here, we use illumina transcriptome sequencing and population resequencing to test for changes in polymorphism, base composition, and selection in the selfing angiosperm Collinsia rattanii (Plantaginaceae) compared with its more outcrossing sister species Collinsia linearis. Coalescent analysis indicates intermediate species divergence (500,000–1 million years) with no ongoing gene flow, but also evidence that the C. rattanii clade remains polymorphic for floral morphology and mating system, suggesting either an ongoing shift to selfing or a potential reversal from selfing to outcrossing. We identify a significant reduction in polymorphism in C. rattanii, particularly within populations. Analysis of polymorphisms suggests an elevated ratio of unique nonsynonymous to synonymous polymorphism in C. rattanii, consistent with relaxed selection in selfing lineages. We additionally find higher linkage disequilibrium and differentiation, lower GC content at variable sites, and reduced expression of genes important in pollen production and pollinator attraction in C. rattanii compared with C. linearis. Together, our results highlight the potential for rapid shifts in the efficacy of selection, gene expression and base composition associated with ongoing evolution of selfing.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris

Gavin M. Douglas; Gesseca Gos; Kim A. Steige; Adriana Salcedo; Karl Holm; Emily B. Josephs; Ramesh Arunkumar; J. Arvid Ågren; Khaled M. Hazzouri; Wei Wang; Adrian E. Platts; Robert J. Williamson; Barbara Neuffer; Martin Lascoux; Tanja Slotte; Stephen I. Wright

Significance Plants have undergone repeated rounds of whole-genome duplication, followed by gene degeneration and loss. Using whole-genome resequencing, we examined the origins of the recent tetraploid Capsella bursa-pastoris and the earliest stages of genome evolution after polyploidization. We conclude the species had a hybrid origin from two distinct Capsella lineages within the past 100,000–300,000 y. Our analyses suggest the absence of rapid gene loss but provide evidence that the species has large numbers of inactivating mutations, many of which were inherited from the parental species. Our results suggest that genome evolution following polyploidy is determined not only by genome redundancy but also by demography, the mating system, and the evolutionary history of the parental species. Whole-genome duplication (WGD) events have occurred repeatedly during flowering plant evolution, and there is growing evidence for predictable patterns of gene retention and loss following polyploidization. Despite these important insights, the rate and processes governing the earliest stages of diploidization remain poorly understood, and the relative importance of genetic drift, positive selection, and relaxed purifying selection in the process of gene degeneration and loss is unclear. Here, we conduct whole-genome resequencing in Capsella bursa-pastoris, a recently formed tetraploid with one of the most widespread species distributions of any angiosperm. Whole-genome data provide strong support for recent hybrid origins of the tetraploid species within the past 100,000–300,000 y from two diploid progenitors in the Capsella genus. Major-effect inactivating mutations are frequent, but many were inherited from the parental species and show no evidence of being fixed by positive selection. Despite a lack of large-scale gene loss, we observe a decrease in the efficacy of natural selection genome-wide due to the combined effects of demography, selfing, and genome redundancy from WGD. Our results suggest that the earliest stages of diploidization are associated with quantitative genome-wide decreases in the strength and efficacy of selection rather than rapid gene loss, and that nonfunctionalization can receive a “head start” through a legacy of deleterious variants and differential expression originating in parental diploid populations.

Collaboration


Dive into the Khaled M. Hazzouri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Nelson

New York University Abu Dhabi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Khaled Masmoudi

United Arab Emirates University

View shared research outputs
Researchain Logo
Decentralizing Knowledge