Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Khaled Qanud is active.

Publication


Featured researches published by Khaled Qanud.


Circulation Research | 2010

Intramyocardial VEGF-B167 Gene Delivery Delays the Progression Towards Congestive Failure in Dogs With Pacing-Induced Dilated Cardiomyopathy

Martino Pepe; Mohammed Mamdani; Lorena Zentilin; Anna Csiszar; Khaled Qanud; Serena Zacchigna; Zoltan Ungvari; Uday Puligadda; Silvia Moimas; Xiaobin Xu; John G. Edwards; Thomas H. Hintze; Mauro Giacca; Fabio A. Recchia

Rationale: Vascular endothelial growth factor (VEGF)-B selectively binds VEGF receptor (VEGFR)-1, a receptor that does not mediate angiogenesis, and is emerging as a major cytoprotective factor. Objective: To test the hypothesis that VEGF-B exerts non–angiogenesis-related cardioprotective effects in nonischemic dilated cardiomyopathy. Methods and Results: AAV-9–carried VEGF-B167 cDNA (1012 genome copies) was injected into the myocardium of chronically instrumented dogs developing tachypacing-induced dilated cardiomyopathy. After 4 weeks of pacing, green fluorescent protein–transduced dogs (AAV-control, n=8) were in overt congestive heart failure, whereas the VEGF-B–transduced (AAV-VEGF-B, n=8) were still in a well-compensated state, with physiological arterial Po2. Left ventricular (LV) end-diastolic pressure in AAV-VEGF-B and AAV-control was, respectively, 15.0±1.5 versus 26.7±1.8 mm Hg and LV regional fractional shortening was 9.4±1.6% versus 3.0±0.6% (all P<0.05). VEGF-B prevented LV wall thinning but did not induce cardiac hypertrophy and did not affect the density of &agr;-smooth muscle actin–positive microvessels, whereas it normalized TUNEL-positive cardiomyocytes and caspase-9 and -3 activation. Consistently, activated Akt, a major negative regulator of apoptosis, was superphysiological in AAV-VEGF-B, whereas the proapoptotic intracellular mediators glycogen synthase kinase (GSK)-3&bgr; and FoxO3a (Akt targets) were activated in AAV-control, but not in AAV-VEGF-B. Cardiac VEGFR-1 expression was reduced 4-fold in all paced dogs, suggesting that exogenous VEGF-B167 exerted a compensatory receptor stimulation. The cytoprotective effects of VEGF-B167 were further elucidated in cultured rat neonatal cardiomyocytes exposed to 10−8 mol/L angiotensin II: VEGF-B167 prevented oxidative stress, loss of mitochondrial membrane potential, and, consequently, apoptosis. Conclusions: We determined a novel, angiogenesis-unrelated cardioprotective effect of VEGF-B167 in nonischemic dilated cardiomyopathy, which limits apoptotic cell loss and delays the progression toward failure.


Journal of Pharmacology and Experimental Therapeutics | 2007

Chronic activation of peroxisome proliferator-activated receptor-α with fenofibrate prevents alterations in cardiac metabolic phenotype without changing the onset of decompensation in pacing-induced heart failure

Volodymyr Labinskyy; Michelle Bellomo; Margaret P. Chandler; Martin E. Young; Vincenzo Lionetti; Khaled Qanud; Federico Bigazzi; T. Sampietro; William C. Stanley; Fabio A. Recchia

Severe heart failure (HF) is characterized by profound alterations in cardiac metabolic phenotype, with down-regulation of the free fatty acid (FFA) oxidative pathway and marked increase in glucose oxidation. We tested whether fenofibrate, a pharmacological agonist of peroxisome proliferator-activated receptor-α, the nuclear receptor that activates the expression of enzymes involved in FFA oxidation, can prevent metabolic alterations and modify the progression of HF. We administered 6.5 mg/kg/day p.o. fenofibrate to eight chronically instrumented dogs over the entire period of high-frequency left ventricular pacing (HF + Feno). Eight additional HF dogs were not treated, and eight normal dogs were used as a control. [3H]Oleate and [14C]Glucose were infused intravenously to measure the rate of substrate oxidation. At 21 days of pacing, left ventricular end-diastolic pressure was significantly lower in HF + Feno (14.1 ± 1.6 mm Hg) compared with HF (18.7 ± 1.3 mm Hg), but it increased up to 25 ± 2 mm Hg, indicating end-stage failure, in both groups after 29 ± 2 days of pacing. FFA oxidation was reduced by 40%, and glucose oxidation was increased by 150% in HF compared with control, changes that were prevented by fenofibrate. Consistently, the activity of myocardial medium chain acyl-CoA dehydrogenase, a marker enzyme of the FFA β-oxidation pathway, was reduced in HF versus control (1.46 ± 0.25 versus 2.42 ± 0.24 μmol/min/gram wet weight (gww); p < 0.05) but not in HF + Feno (1.85 ± 0.18 μmol/min/gww; N.S. versus control). Thus, preventing changes in myocardial substrate metabolism in the failing heart causes a modest improvement of cardiac function during the progression of the disease, with no effects on the onset of decompensation.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Reverse changes in cardiac substrate oxidation in dogs recovering from heart failure.

Khaled Qanud; Mohammed Mamdani; Martino Pepe; Ramzi J. Khairallah; John Gravel; Biao Lei; Sachin A. Gupte; Victor G. Sharov; Hani N. Sabbah; William C. Stanley; Fabio A. Recchia

When recovering from heart failure (HF), the myocardium displays a marked plasticity and can regain normal gene expression and function; however, recovery of substrate oxidation capacity has not been explored. We tested whether cardiac functional recovery is matched by normalization of energy substrate utilization during post-HF recovery. HF was induced in dogs by pacing the left ventricle (LV) at 210-240 beats/min for 4 wk. Tachycardia was discontinued, and the heart was allowed to recover. An additional group was studied in HF, and healthy dogs served as controls (n = 8/group). Cardiac free fatty acids (FFAs) and glucose oxidation were measured with [3H]oleate and [14C]glucose. At 10 days of recovery, hemodynamic parameters returned to control values; however, the contractile response to dobutamine remained depressed, LV end-diastolic volume was 28% higher than control, and the heart mass-to-body mass ratio was increased (9.8 +/- 0.4 vs. 7.5 +/- 0.2 g/kg, P < 0.05). HF increased glucose oxidation (76.8 +/- 19.7 nmol.min(-1).g(-1)) and decreased FFA oxidation (20.7 +/- 6.4 nmol.min(-1).g(-1)), compared with normal dogs (24.5 +/- 6.3 and 51.7 +/- 9.6 nmol.min(-1).g(-1), respectively), and reversed to normal values at 10 days of recovery (25.4 +/- 6.0 and 46.6 +/- 6.7 nmol.min(-1).g(-1), respectively). However, similar to HF, the recovered dogs failed to increase glucose and fatty acid uptake in response to pacing stress. The activity of myocardial citrate synthase and aconitase was significantly decreased during recovery compared with that in control dogs (58 and 27% lower, respectively, P < 0.05), indicating a persistent reduction in mitochondrial oxidative capacity. In conclusion, cardiac energy substrate utilization is normalized in the early stage of post-HF recovery at baseline, but not under stress conditions.


Journal of Pharmacology and Experimental Therapeutics | 2010

Treatment of Heart Failure by a Methanocarba Derivative of Adenosine Monophosphate: Implication for a Role of Cardiac Purinergic P2X Receptors

Si-Yuan Zhou; Mohammed Mamdani; Khaled Qanud; Jian-Bing Shen; Achilles J. Pappano; T. Santhosh Kumar; Kenneth A. Jacobson; Thomas H. Hintze; Fabio A. Recchia; Bruce T. Liang

Evidence is accumulating to support a potentially important role for purinergic (P2X) receptors in heart failure (HF). We tested the hypothesis that a hydrolysis-resistant nucleotide analog with agonist activity at myocardial P2X receptors (P2XRs) improves the systolic HF phenotype in mouse and dog models. We developed a hydrolysis-resistant adenosine monophosphate derivative, (1′S,2R,3S,4′R,5′S)-4-(6-amino-2-chloro-9H-purin-9-yl)-1-[phosphoryloxymethyl] bicycle[3.1.0]hexane-2,3-diol) (MRS2339), with agonist activity at native cardiac P2XRs. Chronic MRS2339 infusion in postinfarct and calsequestrin (CSQ) mice with HF resulted in higher rates of pressure change (+dP/dt), left ventricle (LV)-developed pressure, and cardiac output in an in vitro working heart model. Heart function in vivo, as determined by echocardiography-derived fractional shortening, was also improved in MRS2339-infused mice. The beneficial effect of MRS2339 was dose-dependent and was identical to that produced by cardiac myocyte-specific overexpression of the P2X4 receptor. The HF improvement was associated with the preservation of LV wall thickness in both systole and diastole in postinfarct and CSQ mice. In dogs with pacing-induced HF, MRS2339 infusion reduced left ventricular end-diastolic pressure, improved arterial oxygenation, and increased +dP/dt. MRS2339 treatment also decreased LV chamber size in mice and dogs with HF. In murine and canine models of systolic HF, in vivo administration of a P2X nucleotide agonist improved contractile function and cardiac performance. These actions were associated with preserved LV wall thickness and decreased LV remodeling. The data are consistent with a role of cardiac P2XRs in mediating the beneficial effect of this agonist.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Coronary nitric oxide production controls cardiac substrate metabolism during pregnancy in the dog

Jeffrey G Williams; Caroline Ojaimi; Khaled Qanud; Suhua Zhang; Xiaobin Xu; Fabio A. Recchia; Thomas H. Hintze

The aim of this study was to examine the role of nitric oxide (NO) in the control of cardiac metabolism at 60 days of pregnancy (P60) in the dog. There was a basal increase in diastolic coronary blood flow during pregnancy and a statistically significant increase in cardiac output (55 +/- 4%) and in cardiac NOx production (44 +/- 4 to 59 +/- 3 nmol/min, P < 0.05). Immunohistochemistry of the left ventricle showed an increase in endothelial nitric oxide synthase staining in the endothelial cells at P60. NO-dependent coronary vasodilation (Bezold-Jarisch reflex) was increased by 20% and blocked by N(G)-nitro-l-arginine methyl ester (l-NAME). Isotopically labeled substrates were infused to measure oleate, glucose uptake, and oxidation. Glucose oxidation was not significantly different in P60 hearts (5.4 +/- 0.5 vs. 6.2 +/- 0.4 micromol/min) but greatly increased in response to l-NAME injection (to 19.9 +/- 0.9 micromol/min, P < 0.05). Free fatty acid (FFA) oxidation was increased in P60 (from 5.3 +/- 0.6 to 10.4 +/- 0.5 micromol/min, P < 0.05) and decreased in response to l-NAME (to 4.5 +/- 0.5 micromol/min, P < 0.05). There was an increased oxidation of FFA for ATP production but no change in the respiratory quotient during pregnancy. Genes associated with glucose and glycogen metabolism were downregulated, whereas genes involved in FFA oxidation were elevated. The acute inhibition of NO shifts the heart away from FFA and toward glucose metabolism despite the downregulation of the carbohydrate oxidative pathway. The increase in endothelium-derived NO during pregnancy results in a tonic inhibition of glucose oxidation and reliance on FFA uptake and oxidation to support ATP synthesis in conjunction with upregulation of FFA metabolic enzymes.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Beneficial effects of acute inhibition of the oxidative pentose phosphate pathway in the failing heart.

Claudio Vimercati; Khaled Qanud; Gianfranco Mitacchione; Danuta Sosnowska; Zoltan Ungvari; Roberto Sarnari; Daniella Mania; Neel Patel; Thomas H. Hintze; Sachin A. Gupte; William C. Stanley; Fabio A. Recchia

In vitro studies suggested that glucose metabolism through the oxidative pentose phosphate pathway (oxPPP) can paradoxically feed superoxide-generating enzymes in failing hearts. We therefore tested the hypothesis that acute inhibition of the oxPPP reduces oxidative stress and enhances function and metabolism of the failing heart, in vivo. In 10 chronically instrumented dogs, congestive heart failure (HF) was induced by high-frequency cardiac pacing. Myocardial glucose consumption was enhanced by raising arterial glycemia to levels mimicking postprandial peaks, before and after intravenous administration of the oxPPP inhibitor 6-aminonicotinamide (80 mg/kg). Myocardial energy substrate metabolism was measured with radiolabeled glucose and oleic acid, and cardiac 8-isoprostane output was used as an index of oxidative stress. A group of five chronically instrumented, normal dogs served as control. In HF, raising glycemic levels from ∼ 80 to ∼ 170 mg/dL increased cardiac isoprostane output by approximately twofold, whereas oxPPP inhibition normalized oxidative stress and enhanced cardiac oxygen consumption, glucose oxidation, and stroke work. In normal hearts glucose infusion did not induce significant changes in cardiac oxidative stress. Myocardial tissue concentration of 6P-gluconate, an intermediate metabolite of the oxPPP, was significantly reduced by ∼ 50% in treated versus nontreated failing hearts, supporting the inhibitory effect of 6-aminonicotinamide. Our study indicates an important contribution of the oxPPP activity to cardiac oxidative stress in HF, which is particularly pronounced during common physiological changes such as postprandial glycemic peaks.


The Journal of Physiology | 2012

Acute vagal stimulation attenuates cardiac metabolic response to β-adrenergic stress

Claudio Vimercati; Khaled Qanud; Itamar Ilsar; Gianfranco Mitacchione; Roberto Sarnari; Daniella Mania; Ryan Faulk; William C. Stanley; Hani N. Sabbah; Fabio A. Recchia

•  Whereas the effects of catecholamines on myocardial metabolism are well characterized, the potential role of the parasympathetic system is generally considered minor or absent. •  We tested the hypothesis that acute stimulation of the right vagus nerve alters the balance between cardiac free fatty acid and carbohydrate oxidation and opposes the metabolic effects of beta‐adrenergic stimulation. •  Using a clinical‐type selective stimulator of the vagal efferent fibers in dogs, we found that vagal stimulation did not significantly affect baseline cardiac performance, haemodynamics and myocardial metabolism. •  During dobutamine stress, vagal stimulation attenuated the increase in left ventricular mechanical performance, cardiac oxygen consumption and myocardial glucose oxidation, while free fatty acid oxidation was affected only at low catecholamine dose. •  Our results elucidate a previously unexplored parasympathetic function, indicating that selective vagal efferent stimulation antagonizes the effects of beta‐adrenergic activation on myocardial metabolism.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Hyperglycemia induces defective Ca2+ homeostasis in cardiomyocytes

Andrea Sorrentino; Giulia Borghetti; Yu Zhou; Antonio Cannata; Marianna Meo; Sergio Signore; Piero Anversa; Annarosa Leri; Polina Goichberg; Khaled Qanud; Jason T. Jacobson; Thomas H. Hintze; Marcello Rota

Diabetes and other metabolic conditions characterized by elevated blood glucose constitute important risk factors for cardiovascular disease. Hyperglycemia targets myocardial cells rendering ineffective mechanical properties of the heart, but cellular alterations dictating the progressive deterioration of cardiac function with metabolic disorders remain to be clarified. In the current study, we examined the effects of hyperglycemia on cardiac function and myocyte physiology by employing mice with high blood glucose induced by administration of streptozotocin, a compound toxic to insulin-producing β-cells. We found that hyperglycemia initially delayed the electrical recovery of the heart, whereas cardiac function became defective only after ~2 mo with this condition and gradually worsened with time. Prolonged hyperglycemia was associated with increased chamber dilation, thinning of the left ventricle (LV), and myocyte loss. Cardiomyocytes from hyperglycemic mice exhibited defective Ca2+ transients before the appearance of LV systolic defects. Alterations in Ca2+ transients involved enhanced spontaneous Ca2+ releases from the sarcoplasmic reticulum (SR), reduced cytoplasmic Ca2+ clearance, and declined SR Ca2+ load. These defects have important consequences on myocyte contraction, relaxation, and mechanisms of rate adaptation. Collectively, our data indicate that hyperglycemia alters intracellular Ca2+ homeostasis in cardiomyocytes, hindering contractile activity and contributing to the manifestation of the diabetic cardiomyopathy. NEW & NOTEWORTHY We have investigated the effects of hyperglycemia on cardiomyocyte physiology and ventricular function. Our results indicate that defective Ca2+ handling is a critical component of the progressive deterioration of cardiac performance of the diabetic heart.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Myocyte repolarization modulates myocardial function in aging dogs

Andrea Sorrentino; Sergio Signore; Khaled Qanud; Giulia Borghetti; Marianna Meo; Antonio Cannata; Yu Zhou; Ewa Wybieralska; Marco Luciani; Ramaswamy Kannappan; Eric Zhang; Alex Matsuda; Andrew Webster; Maria Cimini; Elizabeth Kertowidjojo; David A. D'Alessandro; Oriyanhan Wunimenghe; Robert E. Michler; Christopher Royer; Polina Goichberg; Annarosa Leri; Edward G. Barrett; Piero Anversa; Thomas H. Hintze; Marcello Rota

Studies of myocardial aging are complex and the mechanisms involved in the deterioration of ventricular performance and decreased functional reserve of the old heart remain to be properly defined. We have studied a colony of beagle dogs from 3 to 14 yr of age kept under a highly regulated environment to define the effects of aging on the myocardium. Ventricular, myocardial, and myocyte function, together with anatomical and structural properties of the organ and cardiomyocytes, were evaluated. Ventricular hypertrophy was not observed with aging and the structural composition of the myocardium was modestly affected. Alterations in the myocyte compartment were identified in aged dogs, and these factors negatively interfere with the contractile reserve typical of the young heart. The duration of the action potential is prolonged in old cardiomyocytes contributing to the slower electrical recovery of the myocardium. Also, the remodeled repolarization of cardiomyocytes with aging provides inotropic support to the senescent muscle but compromises its contractile reserve, rendering the old heart ineffective under conditions of high hemodynamic demand. The defects in the electrical and mechanical properties of cardiomyocytes with aging suggest that this cell population is an important determinant of the cardiac senescent phenotype. Collectively, the delayed electrical repolarization of aging cardiomyocytes may be viewed as a critical variable of the aging myopathy and its propensity to evolve into ventricular decompensation under stressful conditions.


Journal of Molecular and Cellular Cardiology | 2015

Acetylation mediates Cx43 reduction caused by electrical stimulation

Viviana Meraviglia; Valerio Azzimato; Claudia Colussi; Maria Cristina Florio; Anna Binda; Alice Panariti; Khaled Qanud; Silvia Suffredini; Laura Gennaccaro; Michele Miragoli; Andrea Barbuti; Paul D. Lampe; Carlo Gaetano; Peter P. Pramstaller; Maurizio C. Capogrossi; Fabio A. Recchia; Giulio Pompilio; Ilaria Rivolta; Alessandra Rossini

Communication between cardiomyocytes depends upon gap junctions (GJ). Previous studies have demonstrated that electrical stimulation induces GJ remodeling and modifies histone acetylase (HAT) and deacetylase (HDAC) activities, although these two results have not been linked. The aim of this work was to establish whether electrical stimulation modulates GJ-mediated cardiac cell-cell communication by acetylation-dependent mechanisms. Field stimulation of HL-1 cardiomyocytes at 0.5 Hz for 24 h significantly reduced connexin43 (Cx43) expression and cell-cell communication. HDAC activity was down-regulated whereas HAT activity was not modified resulting in increased acetylation of Cx43. Consistent with a post-translational mechanism, we did not observe a reduction in Cx43 mRNA in electrically stimulated cells, while the proteasomal inhibitor MG132 maintained Cx43 expression. Further, the treatment of paced cells with the HAT inhibitor Anacardic Acid maintained both the levels of Cx43 and cell-cell communication. Finally, we observed increased acetylation of Cx43 in the left ventricles of dogs subjected to chronic tachypacing as a model of abnormal ventricular activation. In conclusion, our findings suggest that altered electrical activity can regulate cardiomyocyte communication by influencing the acetylation status of Cx43.

Collaboration


Dive into the Khaled Qanud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcello Rota

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Sorrentino

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Annarosa Leri

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Daniella Mania

New York Medical College

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge