Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Khaleel A. Razak is active.

Publication


Featured researches published by Khaleel A. Razak.


Brain Research | 2012

Minocycline treatment reverses ultrasonic vocalization production deficit in a mouse model of Fragile X Syndrome.

Sarah E. Rotschafer; Michael Trujillo; Lorraine E. Dansie; Iryna M. Ethell; Khaleel A. Razak

Fragile X Syndrome (FXS) is the most common inherited form of intellectual disability, with behaviors characteristic of autism. Symptoms include abnormal social behavior, repetitive behavior, communication disorders, and seizures. Many symptoms of FXS have been replicated in the Fmr1 knockout (KO) mice. Whether Fmr1 KO mice exhibit vocal communication deficits is not known. By recording ultrasonic vocalizations (USV) produced by adult male mice during mating, we show that USV calling rate (number of calls/second) is reduced in Fmr1 KO mice compared to WT controls. The WT control and Fmr1 KO groups did not differ in other aspects of mating behavior such as time spent sniffing, mounting, rooting and without contact. Acoustic properties of calls such as mean frequency (in kHz), duration and dynamic range of frequencies were not different. This indicates a specific deficit in USV calling rate in Fmr1 KO mice. Previous studies have shown that treatment of Fmr1 KO mice with minocycline for 4weeks from birth can alleviate some behavioral symptoms. Here we tested if minocycline also reversed vocalization deficits in these mice. Calling rate increased and was similar to WT controls in adult Fmr1 KO mice treated with minocycline for four weeks from birth (P0-P28). All acoustic properties measured were similar in treated and untreated WT control mice indicating minocycline effects were specific to vocalizations in the Fmr1 KO mice. These data suggest that mating-related USVs are robust and relevant biomarkers of FXS, and that minocycline treatment is a promising avenue for treatment of FXS symptoms.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2003

Can two streams of auditory information be processed simultaneously? Evidence from the gleaning bat Antrozous pallidus.

Jesse R. Barber; Khaleel A. Razak; Zoltan M. Fuzessery

A tenet of auditory scene analysis is that we can fully process only one stream of auditory information at a time. We tested this assumption in a gleaning bat, the pallid bat (Antrozous pallidus) because this bat uses echolocation for general orientation, and relies heavily on prey-generated sounds to detect and locate its prey. It may therefore encounter situations in which the echolocation and passive listening streams temporally overlap. Pallid bats were trained to a dual task in which they had to negotiate a wire array, using echolocation, and land on one of 15 speakers emitting a brief noise burst in order to obtain a food reward. They were forced to process both streams within a narrow 300 to 500 ms time window by having the noise burst triggered by the bats’ initial echolocation pulses as it approached the wire array. Relative to single task controls, echolocation and passive sound localization performance was slightly, but significantly, degraded. The bats also increased echolocation interpulse intervals during the dual task, as though attempting to reduce temporal overlap between the signals. These results suggest that the bats, like humans, have difficulty in processing more than one stream of information at a time.


Journal of Neurophysiology | 2009

GABA Shapes Selectivity for the Rate and Direction of Frequency-Modulated Sweeps in the Auditory Cortex

Khaleel A. Razak; Zoltan M. Fuzessery

In the pallid bat auditory cortex and inferior colliculus (IC), the majority of neurons tuned in the echolocation range is selective for the direction and rate of frequency-modulated (FM) sweeps used in echolocation. Such selectivity is shaped mainly by spectrotemporal asymmetries in sideband inhibition. An early-arriving, low-frequency inhibition (LFI) shapes direction selectivity. A delayed, high-frequency inhibition (HFI) shapes rate selectivity for downward sweeps. Using iontophoretic blockade of GABAa receptors, we show that cortical FM sweep selectivity is at least partially shaped locally. GABAa receptor antagonists, bicuculline or gabazine, reduced or eliminated direction and rate selectivity in approximately 50% of neurons. Intracortical GABA shapes FM sweep selectivity by either creating the underlying sideband inhibition or by advancing the arrival time of inhibition relative to excitation. Given that FM sweep selectivity and asymmetries in sideband inhibition are already present in the IC, these data suggest a refinement or recreation of similar response properties at the cortical level.


The Journal of Neuroscience | 2008

Facilitatory Mechanisms Underlying Selectivity for the Direction and Rate of Frequency Modulated Sweeps in the Auditory Cortex

Khaleel A. Razak; Zoltan M. Fuzessery

Neurons selective for frequency modulated (FM) sweeps are common in auditory systems across different vertebrate groups and may underlie representation of species-specific vocalizations. Studies on mechanisms of FM sweep selectivity have primarily focused on sideband inhibition. Here, we present the first evidence for facilitatory mechanisms of FM sweep selectivity. Facilitatory interactions were found in 46 of 264 (17%) neurons tuned in the echolocation range (25–60 kHz) in the auditory cortex of the pallid bat. These neurons respond poorly to individual tones but are facilitated by combinations of tones with specific spectral and temporal intervals. Facilitation neurons show remarkable sensitivity to sub-millisecond differences in time delays between the two tones. Interestingly, the range of delays eliciting facilitation is not fixed but varies systematically with frequency difference between the two tones. Properties of facilitation strongly predict selectivity for the direction and rate of FM sweeps. Together with previous studies, there appear to be at least three mechanisms underlying FM rate and direction selectivity: sideband inhibition, duration tuning, and facilitation. Interestingly, similar mechanisms underlie direction and velocity tuning in the visual system, suggesting the evolution of similar computations across sensory systems to process dynamic sensory stimuli.


Brain Research | 2013

Altered auditory processing in a mouse model of fragile X syndrome

Sarah E. Rotschafer; Khaleel A. Razak

This study provides the first description of auditory cortical processing in a mouse model of Fragile X Syndrome (FXS). FXS is a genetic cause of intellectual impairment and is an autism spectrum disorder. Human studies with auditory evoked potentials indicate that FXS is associated with abnormal auditory processing. The Fmr1 knock-out (KO) mouse is a useful model for studying FXS. The KO mice show acoustic hypersensitivity and propensity for audiogenic seizures, suggesting altered auditory responses. However, the nature of changes at the neuronal level is not known. Here we conducted in vivo single unit extracellular electrophysiology in the auditory cortex of urethane/xylazine-anesthetized Fmr1 KO mice in response to tones and frequency modulated (FM) sweeps. Using tones as stimuli, we report expanded frequency tuning, enhanced response magnitude, and more variable first spike latencies in Fmr1 KO mice compared to wild-type controls. FM sweep stimuli revealed altered sensitivity to the rate of frequency change indicating abnormal spectrotemporal processing. There was no difference in FM sweep direction selectivity. Consistent with studies of the somatosensory cortex, these data point to hyper-responsiveness of auditory neurons as a key processing abnormality in FXS. Auditory neural responses can serve as outcome measures in preclinical trials of therapeutics for FXS as well as serve as physiological probes to study their mechanisms of action.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Experience is required for the maintenance and refinement of FM sweep selectivity in the developing auditory cortex

Khaleel A. Razak; Marlin D. Richardson; Zoltan M. Fuzessery

Frequency modulated (FM) sweeps are common components of vocalizations, including human speech. How developmental experience shapes neuronal selectivity for these important signals is not well understood. Here, we show that altered developmental experience with FM sweeps used in echolocation by the pallid bat leads to either a loss of sideband inhibition or millisecond delays in the timing of inhibitory inputs, both of which lead to a reduction in rate and direction selectivity in auditory cortex. FM rate selectivity develops in an experience-independent manner, but requires experience for subsequent maintenance. Direction selectivity depends on experience for both development and maintenance. Rate and direction selectivity are affected by experience over different time periods during development. Altered inhibition may be a general mechanism of experience-dependent plasticity of selectivity for vocalizations.


Frontiers in Cellular Neuroscience | 2014

Auditory processing in fragile x syndrome.

Sarah E. Rotschafer; Khaleel A. Razak

Fragile X syndrome (FXS) is an inherited form of intellectual disability and autism. Among other symptoms, FXS patients demonstrate abnormalities in sensory processing and communication. Clinical, behavioral, and electrophysiological studies consistently show auditory hypersensitivity in humans with FXS. Consistent with observations in humans, the Fmr1 KO mouse model of FXS also shows evidence of altered auditory processing and communication deficiencies. A well-known and commonly used phenotype in pre-clinical studies of FXS is audiogenic seizures. In addition, increased acoustic startle response is seen in the Fmr1 KO mice. In vivo electrophysiological recordings indicate hyper-excitable responses, broader frequency tuning, and abnormal spectrotemporal processing in primary auditory cortex of Fmr1 KO mice. Thus, auditory hyper-excitability is a robust, reliable, and translatable biomarker in Fmr1 KO mice. Abnormal auditory evoked responses have been used as outcome measures to test therapeutics in FXS patients. Given that similarly abnormal responses are present in Fmr1 KO mice suggests that cellular mechanisms can be addressed. Sensory cortical deficits are relatively more tractable from a mechanistic perspective than more complex social behaviors that are typically studied in autism and FXS. The focus of this review is to bring together clinical, functional, and structural studies in humans with electrophysiological and behavioral studies in mice to make the case that auditory hypersensitivity provides a unique opportunity to integrate molecular, cellular, circuit level studies with behavioral outcomes in the search for therapeutics for FXS and other autism spectrum disorders.


Hearing Research | 2012

Parvalbumin immunoreactivity in the auditory cortex of a mouse model of presbycusis

H.N. Martin del Campo; Kevin Measor; Khaleel A. Razak

Age-related hearing loss (presbycusis) affects ∼35% of humans older than sixty-five years. Symptoms of presbycusis include impaired discrimination of sounds with fast temporal features, such as those present in speech. Such symptoms likely arise because of central auditory system plasticity, but the underlying components are incompletely characterized. The rapid spiking inhibitory interneurons that co-express the calcium binding protein Parvalbumin (PV) are involved in shaping neural responses to fast spectrotemporal modulations. Here, we examined cortical PV expression in the C57bl/6 (C57) mouse, a strain commonly studied as a presbycusis model. We examined if PV expression showed auditory cortical field- and layer-specific susceptibilities with age. The percentage of PV-expressing cells relative to Nissl-stained cells was counted in the anterior auditory field (AAF) and primary auditory cortex (A1) in three age groups: young (1-2 months), middle-aged (6-8 months) and old (14-20 months). There were significant declines in the percentage of cells expressing PV at a detectable level in layers I-IV of both A1 and AAF in the old mice compared to young mice. In layers V-VI, there was an increase in the percentage of PV-expressing cells in the AAF of the old group. There were no changes in percentage of PV-expressing cells in layers V-VI of A1. These data suggest cortical layer(s)- and field-specific susceptibility of PV+ cells with presbycusis. The results are consistent with the hypothesis that a decline in inhibitory neurotransmission, particularly in the superficial cortical layers, occurs with presbycusis.


Frontiers in Cellular Neuroscience | 2015

A delicate balance: role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders.

Sarah Reinhard; Khaleel A. Razak; Iryna M. Ethell

The extracellular matrix (ECM) is a critical regulator of neural network development and plasticity. As neuronal circuits develop, the ECM stabilizes synaptic contacts, while its cleavage has both permissive and active roles in the regulation of plasticity. Matrix metalloproteinase 9 (MMP-9) is a member of a large family of zinc-dependent endopeptidases that can cleave ECM and several cell surface receptors allowing for synaptic and circuit level reorganization. It is becoming increasingly clear that the regulated activity of MMP-9 is critical for central nervous system (CNS) development. In particular, MMP-9 has a role in the development of sensory circuits during early postnatal periods, called ‘critical periods.’ MMP-9 can regulate sensory-mediated, local circuit reorganization through its ability to control synaptogenesis, axonal pathfinding and myelination. Although activity-dependent activation of MMP-9 at specific synapses plays an important role in multiple plasticity mechanisms throughout the CNS, misregulated activation of the enzyme is implicated in a number of neurodegenerative disorders, including traumatic brain injury, multiple sclerosis, and Alzheimer’s disease. Growing evidence also suggests a role for MMP-9 in the pathophysiology of neurodevelopmental disorders including Fragile X Syndrome. This review outlines the various actions of MMP-9 during postnatal brain development, critical for future studies exploring novel therapeutic strategies for neurodevelopmental disorders.


The Journal of Neuroscience | 2007

Development of Inhibitory Mechanisms Underlying Selectivity for the Rate and Direction of Frequency-Modulated Sweeps in the Auditory Cortex

Khaleel A. Razak; Zoltan M. Fuzessery

Although it is known that neural selectivity for species-specific vocalizations changes during development, the mechanisms underlying such changes are not known. This study followed the development of mechanisms underlying selectivity for the direction and rate of frequency-modulated (FM) sweeps in the auditory cortex of the pallid bat, a species that uses downward FM sweeps to echolocate. In the adult cortex, direction and rate selectivity arise as a result of different spectral and temporal properties of low-frequency inhibition (LFI) and high-frequency inhibition (HFI). A narrow band of delayed HFI shapes rate selectivity for downward FM sweeps. A broader band of early LFI shapes direction selectivity. Here we asked whether these differences in LFI and HFI are present at the onset of hearing in the echolocation range or whether the differences develop slowly. We also studied how the development of properties of inhibitory frequencies influences FM rate and direction selectivity. We found that adult-like FM rate selectivity is present at 2 weeks after birth, whereas direction selectivity matures 12 weeks after birth. The different developmental time course for direction and rate selectivity is attributable to the differences in the development of LFI and HFI. Arrival time and bandwidth of HFI are adult-like at 2 weeks. Average arrival time of LFI gradually becomes faster and bandwidth becomes broader between 2 and 12 weeks. Thus, two properties of FM sweeps that are important for vocalization selectivity follow different developmental time courses attributable to the differences in the development of underlying inhibitory mechanisms.

Collaboration


Dive into the Khaleel A. Razak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Measor

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron R. Seitz

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge