Khalid Choudhury
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Khalid Choudhury.
Nature | 2009
Shaun Purcell; Naomi R. Wray; Jennifer Stone; Peter M. Visscher; Michael Conlon O'Donovan; Patrick F. Sullivan; Pamela Sklar; Douglas M. Ruderfer; Andrew McQuillin; Derek W. Morris; Colm O’Dushlaine; Aiden Corvin; Peter Holmans; Michael C. O’Donovan; Stuart MacGregor; Hugh Gurling; Douglas Blackwood; Nicholas John Craddock; Michael Gill; Christina M. Hultman; George Kirov; Paul Lichtenstein; Walter J. Muir; Michael John Owen; Carlos N. Pato; Edward M. Scolnick; David St Clair; Nigel Melville Williams; Lyudmila Georgieva; Ivan Nikolov
Schizophrenia is a severe mental disorder with a lifetime risk of about 1%, characterized by hallucinations, delusions and cognitive deficits, with heritability estimated at up to 80%. We performed a genome-wide association study of 3,322 European individuals with schizophrenia and 3,587 controls. Here we show, using two analytic approaches, the extent to which common genetic variation underlies the risk of schizophrenia. First, we implicate the major histocompatibility complex. Second, we provide molecular genetic evidence for a substantial polygenic component to the risk of schizophrenia involving thousands of common alleles of very small effect. We show that this component also contributes to the risk of bipolar disorder, but not to several non-psychiatric diseases.
Nature | 2008
Jennifer Stone; Michael C. O’Donovan; Hugh Gurling; George Kirov; Douglas Blackwood; Aiden Corvin; Nicholas John Craddock; Michael Gill; Christina M. Hultman; Paul Lichtenstein; Andrew McQuillin; Carlos N. Pato; Douglas M. Ruderfer; Michael John Owen; David St Clair; Patrick F. Sullivan; Pamela Sklar; Shaun Purcell; Joshua M. Korn; Stuart Macgregor; Derek W. Morris; Colm O’Dushlaine; Mark J. Daly; Peter M. Visscher; Peter Holmans; Edward M. Scolnick; Nigel Melville Williams; Lucy Georgieva; Ivan Nikolov; Nadine Norton
Schizophrenia is a severe mental disorder marked by hallucinations, delusions, cognitive deficits and apathy, with a heritability estimated at 73–90% (ref. 1). Inheritance patterns are complex, and the number and type of genetic variants involved are not understood. Copy number variants (CNVs) have been identified in individual patients with schizophrenia and also in neurodevelopmental disorders, but large-scale genome-wide surveys have not been performed. Here we report a genome-wide survey of rare CNVs in 3,391 patients with schizophrenia and 3,181 ancestrally matched controls, using high-density microarrays. For CNVs that were observed in less than 1% of the sample and were more than 100 kilobases in length, the total burden is increased 1.15-fold in patients with schizophrenia in comparison with controls. This effect was more pronounced for rarer, single-occurrence CNVs and for those that involved genes as opposed to those that did not. As expected, deletions were found within the region critical for velo-cardio-facial syndrome, which includes psychotic symptoms in 30% of patients. Associations with schizophrenia were also found for large deletions on chromosome 15q13.3 and 1q21.1. These associations have not previously been reported, and they remained significant after genome-wide correction. Our results provide strong support for a model of schizophrenia pathogenesis that includes the effects of multiple rare structural variants, both genome-wide and at specific loci.
Molecular Psychiatry | 2009
Andrew McQuillin; Nick Bass; Khalid Choudhury; Vinay Puri; M Kosmin; Jacob Lawrence; David Curtis; H M D Gurling
Three linkage studies of bipolar disorder have implicated chromosome 12q24.3 with lod scores of over 3.0 and several other linkage studies have found lods between 2 and 3. Fine mapping within the original chromosomal linkage regions has identified several loci that show association with bipolar disorder. One of these is the P2RX7 gene encoding a central nervous system-expressed purinergic receptor. A non-synonymous single nucleotide polymorphism, rs2230912 (P2RX7-E13A, G allele) and a microsatellite marker NBG6 were both previously found to be associated with bipolar disorder (P=0.00071 and 0.008, respectively). rs2230912 has also been found to show association with unipolar depression. The effect of the polymorphism is non-conservative and results in a glutamine to arginine change (Gln460Arg), which is likely to affect P2RX7 dimerization and protein–protein interactions. We have confirmed the allelic associations between bipolar disorder and the markers rs2230912 (P2RX7-E13A, G allele, P=0.043) and NBG6 (P=0.010) in a London-based sample of 604 bipolar cases and 560 controls. When we combined these data with the published case–control studies of P2RX7 and mood disorder (3586 individuals) the association between rs2230912 (Gln460Arg) and affective disorders became more robust (P=0.002). The increase in Gln460Arg was confined to heterozygotes rather than homozygotes suggesting a dominant effect (odds ratio 1.302, CI=1.129–1.503). Although further research is needed to prove that the Gln460Arg change has an aetiological role, it is so far the most convincing mutation to have been found with a role for increasing susceptibility to bipolar and genetically related unipolar disorders.
Molecular Psychiatry | 2006
Andrew McQuillin; Nick Bass; Gursharan Kalsi; Jacob Lawrence; Vinay Puri; Khalid Choudhury; Sevilla D. Detera-Wadleigh; David Curtis; Hugh Gurling
Linkage analyses of bipolar families have confirmed that there is a susceptibility locus near the telomere on chromosome 21q. To fine map this locus we carried out tests of allelic association using 30 genetic markers near the telomere at 21q22.3 in 600 bipolar research subjects and 450 ancestrally matched supernormal control subjects. We found significant allelic association with the microsatellite markers D21S171 (P=0.016) and two closely linked single-nucleotide polymorphisms, rs1556314 (P=0.008) and rs1785467 (P=0.025). A test of association with a three locus haplotype across the susceptibility region was significant with a permutation test of P=0.011. A two SNP haplotype was also significantly associated with bipolar disorder (P=0.01). Only two brain expressed genes, TRPM2 and C21ORF29 (TSPEAR), are present in the associated region. TRPM2 encodes a calcium channel receptor and TSPEAR encodes a peptide with repeats associated with epilepsy in the mouse. DNA from subjects who had inherited the associated marker alleles was sequenced. A base pair change (rs1556314) in exon 11 of TRPM2, which caused a change from an aspartic acid to a glutamic acid at peptide position 543 was found. This SNP showed the strongest association with bipolar disorder (P=0.008). Deletion of exon 11 of TRPM2 is known to cause dysregulation of cellular calcium homeostasis in response to oxidative stress. A second nonconservative change from arginine to cysteine at position 755 in TRPM2 (ss48297761) was also detected. A third nonconservative change from histidine to glutamic acid was found in exon 8 of TSPEAR. These changes need further investigation to establish any aetiological role in bipolar disorder.
Psychiatric Genetics | 2011
David Curtis; Anna E. Vine; Andrew McQuillin; Nicholas Bass; Ana Pereira; Radhika Kandaswamy; Jacob Lawrence; Adebayo Anjorin; Khalid Choudhury; Susmita Datta; Vinay Puri; Robert Krasucki; Jonathan Pimm; Srinivasa Thirumalai; Digby Quested; Hugh Gurling
Objective There are theoretical reasons why comparing marker allele frequencies between cases of different diseases, rather than with controls, may offer benefits. The samples may be better matched, especially for background risk factors common to both diseases. Genetic loci may also be detected which influence which of the two diseases occurs if common risk factors are present. Method We used samples of UK bipolar and schizophrenic cases that had earlier been subject to genome-wide association studies and compared marker allele frequencies between the two samples. When these differed for a marker, we compared the case sample allele frequencies with those of a control sample. Results Eight markers were significant at P value of less than 10−5. Of these, the most interesting finding was for rs17645023, which was significant at P value of less than 10−6 and which lies 36 kb from CACNG5. Control allele frequencies for this marker were intermediate between those for bipolar and schizophrenic cases. Conclusion The application of this approach suggests that it does have some merits. The finding for CACNG5, taken together with the earlier implication of CACNA1C and CACNA1B, strongly suggests a key role for voltage-dependent calcium channel genes in the susceptibility to bipolar disorder and/or schizophrenia.
Molecular Psychiatry | 2010
Susmita Datta; Andrew McQuillin; Ma Rizig; E Blaveri; Srinivasa Thirumalai; Gursharan Kalsi; Jacob Lawrence; Nick Bass; Vinay Puri; Khalid Choudhury; Jonathan Pimm; Caroline Crombie; Gillian M. Fraser; Nicholas Walker; David Curtis; Marketa Zvelebil; Ana Pereira; Radhika Kandaswamy; D. St Clair; H M D Gurling
Markers at the pericentriolar material 1 gene (PCM1) have shown genetic association with schizophrenia in both a University College London (UCL) and a USA-based case–control sample. In this paper we report a statistically significant replication of the PCM1 association in a large Scottish case–control sample from Aberdeen. Resequencing of the genomic DNA from research volunteers who had inherited haplotypes associated with schizophrenia showed a threonine to isoleucine missense mutation in exon 24 which was likely to change the structure and function of PCM1 (rs370429). This mutation was found only as a heterozygote in 98 schizophrenic research subjects and controls out of 2246 case and control research subjects. Among the 98 carriers of rs370429, 67 were affected with schizophrenia. The same alleles and haplotypes were associated with schizophrenia in both the London and Aberdeen samples. Another potential aetiological base pair change in PCM1 was rs445422, which altered a splice site signal. A further mutation, rs208747, was shown by electrophoretic mobility shift assays to create or destroy a promoter transcription factor site. Five further non-synonymous changes in exons were also found. Genotyping of the new variants discovered in the UCL case–control sample strengthened the evidence for allelic and haplotypic association (P=0.02–0.0002). Given the number and identity of the haplotypes associated with schizophrenia, further aetiological base pair changes must exist within and around the PCM1 gene. PCM1 protein has been shown to interact directly with the disrupted-in-schizophrenia 1 (DISC1) protein, Bardet-Biedl syndrome 4, and Huntingtin-associated protein 1, and is important in neuronal cell growth. In a separate study we found that clozapine but not haloperidol downregulated PCM1 expression in the mouse brain. We hypothesize that mutant PCM1 may be responsible for causing a subtype of schizophrenia through abnormal cell division and abnormal regeneration in dividing cells in the central nervous system. This is supported by our previous finding of orbitofrontal volumetric deficits in PCM1-associated schizophrenia patients as opposed to temporal pole deficits in non-PCM1-associated schizophrenia patients. Caution needs to be exercised in interpreting the actual biological effects of the mutations we have found without further cell biology. However, the DNA changes we have found deserve widespread genotyping in multiple case–control populations.
American Journal of Medical Genetics | 2006
Ma Rizig; Andrew McQuillin; Vinay Puri; Khalid Choudhury; Susmita Datta; Srinivasa Thirumalai; Jacob Lawrence; Digby Quested; Jonathan Pimm; Nicholas Bass; Graham Lamb; Helen Moorey; Allison Badacsonyi; Katie Kelly; Jenny Morgan; Bhaskar Punukollu; Gomathinayagam Kandasami; David Curtis; Hugh Gurling
The chromosome 1q23.3 region, which includes the RGS4 gene has been implicated in genetic susceptibility to schizophrenia by two linkage studies with lod scores of 6.35 and 3.20 and with positive lod between 2.00 and 3.00 scores in several other studies. Reduced post mortem RGS4 gene expression in the brain of schizophrenics was reported as well as positive allelic association between markers at the RGS4 gene locus and schizophrenia. We have attempted to replicate the finding of allelic association with schizophrenia in a UK based sample of 450 subjects with schizophrenia and 450 supernormal controls. We genotyped the same SNP marker alleles investigated in the earlier studies and also a di‐nucleotide (GT)14 repeat microsatellite marker, which was 7 kb distal to RGS4. In the new UK sample there was no evidence for allelic or haplotypic association between RGS4 markers and schizophrenia. This might reflect genetic heterogeneity between the population samples, genotyping or other methodological problems. The finding weakens the evidence that mutations or variation in the RGS4 gene have an effect on schizophrenia susceptibility.
Biological Psychiatry | 2007
Vinay Puri; Andrew McQuillin; Khalid Choudhury; Susmita Datta; Jonathan Pimm; Srinivasa Thirumalai; Robert Krasucki; Jacob Lawrence; Digby Quested; Nicholas Bass; Helen Moorey; Jenny Morgan; Bhaskar Punukollu; Gomathinayagam Kandasami; David Curtis; Hugh Gurling
BACKGROUND Linkage studies by us and others have confirmed that chromosome 1q23.3 is a susceptibility locus for schizophrenia. Based on this information, several research groups have published evidence that markers within both the RGS4 and CAPON genes, which are 700 kb apart, independently showed allelic association with schizophrenia. Tests of allelic association with both of these genes in our case control sample were negative. Therefore, we carried out further fine mapping between the RGS4 and CAPON genes. METHODS Twenty-nine SNP and microsatellite markers in the 1q23.3 region were genotyped in the United Kingdom based sample of 450 cases and 450 supernormal control subjects. RESULTS We detected positive allelic association after the eighth marker was genotyped and found that three microsatellite markers (p = .011, p = .014, p = .049) and two SNPs (p = .004, p = .043) localized in the 700 kb region between the RGS4 and CAPON genes, within the UHMK1 gene, were associated with schizophrenia. Tests of significance for marker rs10494370 remained significant following Bonferroni correction (alpha = .006) for multiple tests. Tests of haplotypic association were also significant for UHMK1 (p = .009) using empirical permutation tests, which make it unnecessary to further correct for both multiple alleles and multiple markers. CONCLUSIONS These results provide preliminary evidence that the UHMK1 gene increases susceptibility to schizophrenia. Further confirmation in adequately powered samples is needed. UHMK1 is a serine threonine kinase nuclear protein and is highly expressed in regions of the brain implicated in schizophrenia.
Biological Psychiatry | 2006
Vinay Puri; Andrew McQuillin; Srinivasa Thirumalai; Jacob Lawrence; Robert Krasucki; Khalid Choudhury; Susmita Datta; Simon Kerwin; Digby Quested; Nicholas Bass; Jonathan Pimm; Graham Lamb; Helen Moorey; Gomathinayagam Kandasami; Allison Badacsonyi; Katie Kelly; Jenny Morgan; Bhaskar Punukollu; Haitham Nadeem; David Curtis; Hugh Gurling
BACKGROUND Linkage studies have confirmed that chromosome 1q23.3 is a susceptibility locus for schizophrenia. It was then claimed that markers at the carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase (CAPON) gene showed allelic association with schizophrenia in Canadian families. A second Chinese study found a base pair polymorphism at the CAPON gene also associated with schizophrenia. METHODS We attempted replication using eight markers from the Canadian study in a UK based sample of 450 cases and 450 supernormal controls. RESULTS We found no evidence for allelic or haplotypic association with schizophrenia for any of the markers found to be associated in the Canadian sample. CONCLUSIONS The negative results might reflect genetic heterogeneity between the Canadian, Chinese and UK samples or be due to methodological problems. The present finding weakens the evidence that mutations or variation in the CAPON gene are causing genetic susceptibility to schizophrenia in European populations.
Behavioral and Brain Functions | 2007
Susmita Datta; Andrew McQuillin; Vinay Puri; Khalid Choudhury; Srinivasa Thirumalai; Jacob Lawrence; Jonathan Pimm; Nicholas Bass; Graham Lamb; Helen Moorey; Jenny Morgan; Bhaskar Punukollu; Gomathinayagam Kandasami; Simon Kirwin; Akeem Sule; Digby Quested; David Curtis; Hugh Gurling
BackgroundPrevious linkage and association studies may have implicated the Dystrobrevin-binding protein 1 (DTNBP1) gene locus or a gene in linkage disequilibrium with DTNBP1 on chromosome 6p22.3 in genetic susceptibility to schizophrenia.MethodsWe used the case control design to test for of allelic and haplotypic association with schizophrenia in a sample of four hundred and fifty research subjects with schizophrenia and four hundred and fifty ancestrally matched supernormal controls. We genotyped the SNP markers previously found to be significantly associated with schizophrenia in the original study and also other markers found to be positive in subsequent studies.ResultsWe could find no evidence of allelic, genotypic or haplotypic association with schizophrenia in our UK sample.ConclusionThe results suggest that the DTNBP1 gene contribution to schizophrenia must be rare or absent in our sample. The discrepant allelic association results in previous studies of association between DTNBP1 and schizophrenia could be due population admixture. However, even positive studies of European populations do not show any consistent DTNBP1 alleles or haplotypes associated with schizophrenia. Further research is needed to resolve these issues. The possible confounding of linkage with association in family samples already showing linkage at 6p22.3 might be revealed by testing genes closely linked to DTNBP1 for allelic association and by restricting family based tests of association to only one case per family.