Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Khalid Elamin is active.

Publication


Featured researches published by Khalid Elamin.


Physical Chemistry Chemical Physics | 2013

Different behavior of water in confined solutions of high and low solute concentrations

Khalid Elamin; Helén Jansson; Shigeharu Kittaka; Jan Swenson

Water-glycerol solutions confined in 21 Å pores of the silica matrix MCM-41 C10 have been studied using differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS). The results suggest a micro-phase separation caused by the confinement. Likely the water molecules coordinate to the hydroxyl surface groups of the pores, leaving most of the glycerol molecules in the centre of the pores. This makes the dynamics of glycerol almost concentration independent up to water concentrations of about 85 wt%. However, at higher water concentrations no substantial clustering of glycerol molecules should occur and the glass transition related dynamics exhibit an anomalous behaviour. Instead of a common plasticization effect of water, as for the corresponding bulk solutions (when no ice is formed), it is evident that water acts as an anti-plasticizer in the confinement at high water concentrations. We propose that the increased water concentration slows down the glass transition related dynamics in the deeply supercooled regime due to that a rigid hydrogen bonded network structure of water molecules is formed at low temperatures and low glycerol concentrations. This is in contrast to the situation in a homogenously mixed bulk solution of a high solute concentration where the water molecules will be less hydrogen bonded, and therefore are typically more mobile than the surrounding solute molecules. An almost complete hydrogen bonded network of water molecules may, even in confinements, be sufficiently rigid to slow down the relaxation of embedded solute molecules. It can also be expressed the other way around, i.e. small amounts of glycerol act as a plasticizer for water, due to its breaking up of the nearly tetrahedral network structure. From the here observed concentration dependent behaviour of the deeply supercooled bulk and confined solutions it seems, furthermore, evident that the Tg value of bulk water cannot be estimated from extrapolations of aqueous solutions.


Journal of Chemical Physics | 2012

Calorimetric and relaxation properties of xylitol-water mixtures

Khalid Elamin; Johan Sjöström; Helén Jansson; Jan Swenson

We present the first broadband dielectric spectroscopy (BDS) and differential scanning calorimetry study of supercooled xylitol-water mixtures in the whole concentration range and in wide frequency (10(-2)-10(6) Hz) and temperature (120-365 K) ranges. The calorimetric glass transition, T(g), decreases from 247 K for pure xylitol to about 181 K at a water concentration of approximately 37 wt. %. At water concentrations in the range 29-35 wt. % a plentiful calorimetric behaviour is observed. In addition to the glass transition, almost simultaneous crystallization and melting events occurring around 230-240 K. At higher water concentrations ice is formed during cooling and the glass transition temperature increases to a steady value of about 200 K for all higher water concentrations. This T(g) corresponds to an unfrozen xylitol-water solution containing 20 wt. % water. In addition to the true glass transition we also observed a glass transition-like feature at 220 K for all the ice containing samples. However, this feature is more likely due to ice dissolution [A. Inaba and O. Andersson, Thermochim. Acta, 461, 44 (2007)]. In the case of the BDS measurements the presence of water clearly has an effect on both the cooperative α-relaxation and the secondary β-relaxation. The α-relaxation shows a non-Arrhenius temperature dependence and becomes faster with increasing concentration of water. The fragility of the solutions, determined by the temperature dependence of the α-relaxation close to the dynamic glass transition, decreases with increasing water content up to about 26 wt. % water, where ice starts to form. This decrease in fragility with increasing water content is most likely caused by the increasing density of hydrogen bonds, forming a network-like structure in the deeply supercooled regime. The intensity of the secondary β-relaxation of xylitol decreases noticeably already at a water content of 2 wt. %, and at a water content above 5 wt. % it has been replaced by a considerably stronger water (w) relaxation at about the same frequency. However, the similarities in time scale and activation energy between the w-relaxation and the β-relaxation of xylitol at water contents below 13 wt. % suggest that the w-relaxation is governed, in some way, by the β-relaxation of xylitol, since clusters of water molecules are rare at these water concentrations. At higher water concentrations the intensity and relaxation rate of the w-relaxation increase rapidly with increasing water content (up to the concentration where ice starts to form), most likely due to a rapid increase of small water clusters where an increasing number of water molecules interacting with other water molecules.


Journal of Chemical Physics | 2014

Anomalous dynamics of aqueous solutions of di-propylene glycol methylether confined in MCM-41 by quasielastic neutron scattering

Jan Swenson; Khalid Elamin; Guo Chen; Wiebke Lohstroh; Victoria García Sakai

The molecular dynamics of solutions of di-propylene glycol methylether (2PGME) and H2O (or D2O) confined in 28 Å pores of MCM-41 have been studied by quasielastic neutron scattering and differential scanning calorimetry over the concentration range 0-90 wt.% water. This system is of particular interest due to its pronounced non-monotonic concentration dependent dynamics of 2PGME in the corresponding bulk system, showing the important role of hydrogen bonding for the dynamics. In this study we have elucidated how this non-monotonic concentration dependence is affected by the confined geometry. The results show that this behaviour is maintained in the confinement, but the slowest diffusive dynamics of 2PGME is now observed at a considerably higher water concentration; at 75 wt.% water in MCM-41 compared to 30 wt.% water in the corresponding bulk system. This difference can be explained by an improper mixing of the two confined liquids. The results suggest that water up to a concentration of about 20 wt.% is used to hydrate the hydrophilic hydroxyl surface groups of the silica pores, and that it is only at higher water contents the water becomes partly mixed with 2PGME. Hence, due to this partial micro-phase separation of the two liquids larger, and thereby slower relaxing, structural entities of hydrogen bonded water and 2PGME molecules can only be formed at higher water contents than in the bulk system. However, the Q-dependence is unchanged with confinement, showing that the nature of the molecular motions is preserved. Thus, there is no indication of localization of the dynamics at length scales of less than 20 Å. The dynamics of both water and 2PGME is strongly dominated by translational diffusion at a temperature of 280 K.


Journal of Chemical Physics | 2014

Glass transition and relaxation dynamics of propylene glycol–water solutions confined in clay

Khalid Elamin; Jimmy Björklund; Fredrik Nyhlén; Madeleine Yttergren; Lena Mårtensson; Jan Swenson

The molecular dynamics of aqueous solutions of propylene glycol (PG) and propylene glycol methylether (PGME) confined in a two-dimensional layer-structured Na-vermiculite clay has been studied by broadband dielectric spectroscopy and differential scanning calorimetry. As typical for liquids in confined geometries the intensity of the cooperative α-relaxation becomes considerably more suppressed than the more local β-like relaxation processes. In fact, at high water contents the calorimetric glass transition and related structural α-relaxation cannot even be observed, due to the confinement. Thus, the intensity of the viscosity related α-relaxation is dramatically reduced, but its time scale as well as the related glass transition temperature Tg are for both systems only weakly influenced by the confinement. In the case of the PGME-water solutions it is an important finding since in the corresponding bulk system a pronounced non-monotonic concentration dependence of the glass transition related dynamics has been observed due to the growth of hydrogen bonded relaxing entities of water bridging between PGME molecules [J. Sjöström, J. Mattsson, R. Bergman, and J. Swenson, Phys. Chem. B 115, 10013 (2011)]. The present results suggest that the same type of structural entities are formed in the quasi-two-dimensional space between the clay platelets. It is also observed that the main water relaxation cannot be distinguished from the β-relaxation of PG or PGME in the concentration range up to intermediate water contents. This suggests that these two processes are coupled and that the water molecules affect the time scale of the β-relaxation. However, this is most likely true also for the corresponding bulk solutions, which exhibit similar time scales of this combined relaxation process below Tg. Finally, it is found that at higher water contents the water relaxation does not merge with, or follow, the α-relaxation above Tg, but instead crosses the α-relaxation, indicating that the two relaxation processes are independent of each other. This can only occur if the two processes do not occur in the same parts of the confined solutions. Most likely the hydration shell of the interlayer Na(+) ions is causing this water relaxation, which does not participate in the α-relaxation at any temperature.


Journal of Physical Chemistry B | 2013

Long-Range Diffusion in Xylitol−Water Mixtures

Khalid Elamin; Stefano Cazzato; Johan Sjöström; Stephen M. King; Jan Swenson

Dynamic light scattering (DLS) and small-angle neutron scattering (SANS) were employed to study mixtures of xylitol and water. The results were also related to a previous dielectric relaxation study on the same system. In the temperature range of the DLS measurements the viscosity related structural (α) relaxation is too fast to be observed on the experimental time scale, but a considerably slower exponential and hydrodynamic relaxation process is clearly observable in the polarized light scattering data. A similar ultraslow process has been observed in many other types of binary liquids and commonly assigned to long-range concentration or density fluctuations. In some studies this interpretation has been supported by observations of substantial structural inhomogeneities in static light scattering or SANS experiments. However, in this study we observe such an ultraslow process without any indication of structural inhomogeneities on length-scales above 2 nm. Hence, we suggest that our observed ultraslow process is due to long-range diffusion of single xylitol molecules or small clusters of a few xylitol molecules (and perhaps some associated water molecules) which are randomly dispersed and sufficiently small to not be structurally detected in our SANS study. In the q-range of the DLS measurements this ultraslow relaxation process is around room temperature several orders of magnitude slower than the structural α-relaxation. However, if its 1/q(2)-dependent relaxation time is extrapolated to q-values where relaxation times from dielectric spectroscopy and quasielastic neutron scattering are compatible (about 10 nm(-1)), a relaxation time similar to that of the dielectric α-relaxation is obtained. Thus, the large difference in time scale between the two relaxation processes in the q-range of a DLS study is due to the fact that the α-relaxation is cooperative in nature, rather than caused by long-range single particle diffusion, and thus q-independent at low q-values.


Journal of Materials Chemistry C | 2018

Byproduct-free curing of a highly insulating polyethylene copolymer blend: an alternative to peroxide crosslinking

Massimiliano Mauri; Anna Peterson; Ayça Senol; Khalid Elamin; Antonis Gitsas; Thomas Hjertberg; Aleksandar Matic; Thomas Gkourmpis; Oscar Prieto; Christian Müller

High-voltage direct-current (HVDC) cables are a critical component of tomorrows power grids that seamlessly integrate renewable sources of energy. The most advanced power cable technology uses crosslinked polyethylene (XLPE) insulation, which is produced by peroxide crosslinking of low-density polyethylene (LDPE). Peroxide crosslinking gives rise to hazardous byproducts that compromise the initially excellent purity and cleanliness of LDPE, and hence increase the electrical conductivity of the insulation material. Therefore, a byproduct-free curing process, which maintains the processing advantages and high electrical resistivity of LDPE, is in high demand. Here, we demonstrate a viable alternative to peroxide crosslinking that fulfils these requirements. Click chemistry reactions between two polyethylene copolymers allow the design of a curing process that is additive-free and does not result in the release of any byproducts. The thermoplastic copolymer blend offers a broad processing window up to 140 °C, where compounding and shaping can be carried out without curing. At more elevated temperatures, epoxy and acrylic acid functional groups rapidly react without byproduct formation to form an infusible network. Strikingly, the crosslinked copolymer blend exhibits a very low direct-current (DC) electrical conductivity of 2 × 10−16 S cm−1 at a typical cable operating temperature of 70 °C, which is on par with values measured for both ultra-clean LDPE and commercial XLPE. Hence, the use of polyethylene copolymer blends opens up the possibility to replace peroxide crosslinking with click chemistry type reactions, which may considerably expand the versatility of the most common type of plastic used today.


Journal of Physical Chemistry B | 2017

Conductivity-Relaxation Relations in Nanocomposite Polymer Electrolytes Containing Ionic Liquid

Mansoureh Shojaatalhosseini; Khalid Elamin; Jan Swenson

In this study, we have used nanocomposite polymer electrolytes, consisting of poly(ethylene oxide) (PEO), δ-Al2O3 nanoparticles, and lithium bis(trifluoromethanesolfonyl)imide (LiTFSI) salt (with 4 wt % δ-Al2O3 and PEO:Li ratios of 16:1 and 8:1), and added different amounts of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesolfonyl)imide (BMITFSI). The aim was to elucidate whether the ionic liquid is able to dissociate the Li-ions from the ether oxygens and thereby decouple the ionic conductivity from the segmental polymer dynamics. The results from DSC and dielectric spectroscopy show that the ionic liquid speeds up both the segmental polymer dynamics and the motion of the Li+ ions. However, a close comparison between the structural (α) relaxation process, given by the segmental polymer dynamics, and the ionic conductivity shows that the motion of the Li+ ions decouples from the segmental polymer dynamics at higher concentrations of the ionic liquid (≥20 wt %) and instead becomes more related to the viscosity of the ionic liquid. This decoupling increases with decreasing temperature. In addition to the structural α-relaxation, two more local relaxation processes, denoted β and γ, are observed. The β-relaxation becomes slightly faster at the highest concentration of the ionic liquid (at least for the lower salt concentration), whereas the γ-relaxation is unaffected by the ionic liquid, over the whole concentration range 0-40 wt %.


Chemical Physics | 2013

Why is there no clear glass transition of confined water

Jan Swenson; Khalid Elamin; Helén Jansson; Shigeharu Kittaka


Physical Chemistry Chemical Physics | 2015

Dynamics of aqueous binary glass-formers confined in MCM-41

Khalid Elamin; Helén Jansson; Jan Swenson


Physical Review E | 2015

Brownian motion of single glycerol molecules in an aqueous solution as studied by dynamic light scattering

Khalid Elamin; Jan Swenson

Collaboration


Dive into the Khalid Elamin's collaboration.

Top Co-Authors

Avatar

Jan Swenson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Helén Jansson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Aleksandar Matic

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Johan Sjöström

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Shigeharu Kittaka

Okayama University of Science

View shared research outputs
Top Co-Authors

Avatar

Anna Peterson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ayça Senol

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Christian Müller

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Guo Chen

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Luis Aguilera

Chalmers University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge