Khalid Elhindi
King Saud University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Khalid Elhindi.
Photosynthetica | 2012
Abdul-Wasea Asrar; Gamal M. Abdel-Fattah; Khalid Elhindi
The influence of arbuscular mycorrhizal (AM) fungus Glomus deserticola (Trappe and John) on plant growth, nutrition, flower yield, water relations, chlorophyll (Chl) contents and water-use efficiency (WUE) of snapdragon (Antirhinum majus cv. butterfly) plants were studied in potted culture under well-watered (WW) and water-stress (WS) conditions. The imposed water stress condition significantly reduced all growth parameters, nutrient contents, flower yield, water relations, and Chl pigment content and increased the electrolyte leakage of the plants comparing to those of nonstressed plants. Regardless of the WS level, the mycorrhizal snapdragon plants had significantly higher shoot and root dry mass (DM), WUE, flower yield, nutrient (P, N, K, Mg, and Ca) and Chl contents than those nonmycorrhizal plants grown both under WW or WS conditions. Under WS conditions, the AM colonization had greatly improved the leaf water potential (Ψw), leaf relative water content (RWC) and reduced the leaf electrolyte leakage (EL) of the plants. Although the WS conditions had markedly increased the proline content of the leaves, this increase was significantly higher in nonmycorrhizal than in mycorrhizal plants. This suggests that AM colonization enhances the host plant WS tolerance. Values of benefit and potential dry matter for AM-root associations were highest when plants were stressed and reduced under WW conditions. As a result, the snapdragon plants showed a high degree of dependency on AM fungi which improve plant growth, flower yield, water relations particularly under WS conditions, and these improvements were increased as WS level had increased. This study confirms that AM colonization can mitigate the deleterious effect of water stress on growth and flower yield of the snapdragon ornamental plant.
Saudi Journal of Biological Sciences | 2017
Khalid Elhindi; Ahmed Sharaf Eldin; Abdallah M. Elgorban
Salinity is one of the serious abiotic stresses adversely affecting the majority of arable lands worldwide, limiting the crop productivity of most of the economically important crops. Sweet basil (Osmium basilicum) plants were grown in a non-saline soil (EC = 0.64 dS m−1), in low saline soil (EC = 5 dS m−1), and in a high saline soil (EC = 10 dS m−1). There were differences between arbuscular mycorrhizal (Glomus deserticola) colonized plants (+AMF) and non-colonized plants (−AMF). Mycorrhiza mitigated the reduction of K, P and Ca uptake due to salinity. The balance between K/Na and between Ca/Na was improved in +AMF plants. Growth enhancement by mycorrhiza was independent from plant phosphorus content under high salinity levels. Different growth parameters, salt stress tolerance and accumulation of proline content were investigated, these results showed that the use of mycorrhizal inoculum (AMF) was able to enhance the productivity of sweet basil plants under salinity conditions. Mycorrhizal inoculation significantly increased chlorophyll content and water use efficiency under salinity stress. The sweet basil plants appeared to have high dependency on AMF which improved plant growth, photosynthetic efficiency, gas exchange and water use efficiency under salinity stress. In this study, there was evidence that colonization with AMF can alleviate the detrimental salinity stress influence on the growth and productivity of sweet basil plants.
Soil Science and Plant Nutrition | 2018
Khalid Elhindi; Nasser A. Al-Suhaibani; Salah El-Hendawy; Fahad Al-Mana
ABSTRACT The need for salinity resistance in turfgrass is increasing because of the enhanced use of effluent and other low-quality water for turfgrass irrigation. Although most turfgrasses form an arbuscular mycorrhizal fungus (AMF) symbiosis, there is little information on the mycorrhization of turfgrass species. Therefore, the aim of this study was to determine the effects of three AMF species, Glomus intraradices Schenck & Smith, Glomus etunicatum Becker & Gerdemann, and Glomus deserticola Trappe & John, and a mixture thereof on the growth, productivity, and nutrient uptake of two species of cool-season turfgrasses, Challenger Kentucky bluegrass (Poa pratensis L.) and Arid tall fescue (Festuca arundinacea Schreb.), and to relate the effects to colonization of the roots by mycorrhiza to assess the dependency of the plants (mycorrhizal dependency [MD]). Following the experimental period (4 months) and measurements, the mycorrhizal inoculated plants had significantly greater biomass production compared to that of non-inoculated plants. MD and shoot mineral contents (particularly P) differed among turfgrass hosting AMF, and the highest value (13%) occurred for P. pratensis and F. arundinacea seedlings colonized with G. intraradices and G. deserticola, respectively. The P content was highest for the F. arundinacea/mixed AMF combination compared to other treatments. We confirmed that mycorrhizal inoculation (P. pratensis/G. intraradices and F. arundinacea/mixed AMF combinations) enhanced plant productivity and nutrient uptake (especially P) even under non-optimum conditions.
Journal of Plant Nutrition | 2017
Khalid Elhindi; Salem M. Al-Amri; Eslam Abdel-Salam; Nasser A. Al-Suhaibani
ABSTRACT The objective of this study was to determine the effects of foliar salicylic acid (SA) on salt tolerance of sweet basil seedlings by examining growth, photosynthetic activity, total osmoregulators, and mineral content under salinity. Salinity treatments were established by adding 0, 60, and 120 mM sodium chloride (NaCl) to a base nutrient solution. The addition of 60 and 120 mM NaCl inhibited the growth, photosynthetic activity, and nutrient uptake of sweet basil seedlings, and increased the electrolyte leakage and the plant contents of proline and Na. Sweet basil seedlings were treated with foliar SA application at different concentrations (0.0, 0.50, and 1.00 mM). Foliar applications of SA led to an increase in the growth, chlorophyll content, and gas exchange attributes. With regard to nutrient content, it can be inferred that foliar SA applications increased almost all nutrient content in leaves of sweet basil plants under salt stress. Generally, the greatest values were obtained from 1.00 mM SA application.
Bragantia | 2015
Khalid Elhindi; Salah El-Hendawy; Eslam Abdel-Salam; Abdallah M. Elgorban
Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. This research was conducted to study the influence of drip fertigation in combination with or without N fertilizers on vegetative growth, flowering quality, nutrients concentration in plants and soil fertility after the harvest of zinnia ( Zinnia elegans). A field experiment was conducted using a randomized complete block split plot design with two systems of drip irrigation (surface and subsurface drip irrigation) and 4 nitrogen rates (0, 30, 60, and 120 kg∙ha–1) as the main and split plots, respectively. The results revealed that vegetative growth rate, flowering characteristics , plant chemical contents, plant uptake and available soil from N, P, K, Fe, Mn, and Zn of zinnia increased significantly with increasing N level up to 120 kg∙ha–1. A similar trend was also found in the post-harvest soil fertility and nutrient uptake that approved the importance of drip fertigation with N fertilizers. Subsurface drip irrigation system was found to be more efficient than surface drip irrigation system to obtain maximum yield accompanied by the highest nutrients concentration in zinnia plants and soil fertility after harvest.
Saudi Journal of Biological Sciences | 2011
Abdul-Wasea Asrar; Khalid Elhindi
Saudi Journal of Biological Sciences | 2012
Khalid Elhindi
Progress in Nutrition | 2016
Khalid Elhindi; Salah El-Hendawy; Eslam Abdel-Salam; Urs Schmidhalter; Shafiq ur Rahman; Al-Adl Hassan
Progress in Nutrition | 2016
Khalid Elhindi; Nasser A. Al-Suhaibani; Ahmed Sharaf Eldin; Sobhy M. Yakout; Salem M. Al-Amri
Archive | 2014
Abdul-Wasea Asrar; Khalid Elhindi; Eslam Abdel-Salam