Khalid Lafdi
University of Dayton
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Khalid Lafdi.
Carbon | 2003
Karla L. Strong; David P. Anderson; Khalid Lafdi; John N. Kuhn
Single-wall carbon nanotubes (SWNTs) have exceptional strength and stiffness and high thermal and electrical conductivity, making them excellent candidates for aerospace structural materials. However, one of the most fundamental challenges is purifying the SWNTs. The purpose of this study was to develop a simple purification process for SWNTs, along with an understanding of the purification process. In addition, uncomplicated analytical methods were sought to screen and compare various purification methods. In this study, we demonstrate an easy method of cleaning SWNTs and evaluating their purity. The cleaning method, which employed oxidative heat treatment followed by acid reflux, was straightforward, inexpensive, and fairly effective. The purification mechanism was determined to be, first, that much of the non-nanotube carbon and iron catalyst was oxidized and, second, that the acid washing removed the iron oxide, leaving relatively pure SWNTs. Also, it was shown that a combination of thermal gravimetric analysis and Raman spectroscopy, both of which take only a few minutes and require little sample preparation, are sufficient as qualitative screening tools to determine the relative purity of SWNTs. Other analytical techniques were used to verify the validity of the screening techniques.
Journal of Applied Physics | 2007
Shadab Shaikh; Khalid Lafdi; Rengasamy Ponnappan
The present work involves a study on the thermal conductivity of nanoparticle-oil suspensions for three types of nanoparticles, namely, carbon nanotubes (CNTs), exfoliated graphite (EXG), and heat treated nanofibers (HTT) with PAO oil as the base fluid. To accomplish the above task, an experimental analysis is performed using a modern light flash technique (LFA 447) for measuring the thermal conductivity of the three types of nanofluids, for different loading of nanoparticles. The experimental results show a similar trend as observed in literature for nanofluids with a maximum enhancement of approximately 161% obtained for the CNT-PAO oil suspension. The overall percent enhancements for different volume fractions of the nanoparticles are highest for the CNT-based nanofluid, followed by the EXG and the HTT. The findings from this study for the three different types of carbon nanoparticles can have great potential in the field of thermal management.
Journal of Applied Physics | 2008
Shadab Shaikh; Khalid Lafdi; Kevin P. Hallinan
Latent energy storage capacity was analyzed for a system consisting of carbon nanoparticles doped phase change materials (PCMs). Three types of samples were prepared by doping shell wax with single wall carbon nanotubes (SWCNTs), multiwall CNTs, and carbon nanofibers. Differential scanning calorimetry was used to measure the latent heat of fusion. The measured values of latent heat for all the samples showed a good enhancement over the latent heat of pure wax. A maximum enhancement of approximately 13% was observed for the wax/SWCNT composite corresponding to 1% loading of SWCNT. The change in latent heat was modeled by using an approximation for the intermolecular attraction based on the Lennard-Jones potential. A theoretical model was formulated to estimate the overall latent energy of the samples with the variation in volume fraction of the nanoparticles. The predicted values of latent energy from the model showed good agreement with the experimental results. It was concluded that the higher molecular ...
Journal of Applied Physics | 2007
Khalid Lafdi; Osama Mesalam Mesalhy; Shadab Shaikh
Experimental study was carried out to study the phase changeheat transfer within a composite of phase changematerial (PCM) infiltrated high thermal conductivityfoam. An experimental setup was built to measure the temperature profiles and capture the melting evolution of the PCM inside aluminumfoams.Aluminumfoams were used as the porous material, and low melting temperature paraffin wax was used as the PCM. It was observed from the results that the system parameters of the wax/foam composite had a significant influence on its heat transfer behavior. By using higher porosity aluminumfoam, the steady-state temperature was reached faster as compared to the foams with lower porosity. Similarly for the bigger pore size foams the steady state was attained faster as compared to the smaller pore size foams. This was due to the greater effect of convection in both the higher porosity and bigger pore size foams. However, for the lower porosity foams the heater temperature was comparatively lower than the higher porosity foams due to greater heat conduction through the foammaterial. Therefore, an optimal value should be selected for the foam porosity and pore size such that the effects of both conduction and convection heat transfers can be completely utilized to have a greater and improved thermal performance for the wax/aluminum foamcomposite.
Nanotechnology | 2013
Liberata Guadagno; Marialuigia Raimondo; Vittoria Vittoria; Luigi Vertuccio; Khalid Lafdi; Biagio De Vivo; Patrizia Lamberti; Giovanni Spinelli; Vincenzo Tucci
Heat treatment of carbon nanofibers has proven to be an effective method in removing defects from carbon nanofibers, causing a strong increase in their structural perfection and thermal stability. It affects the bonding states of carbon atoms in the nanofiber structure and causes a significant transformation in the hybridization state of the bonded carbon atoms.Nanofilled resins made of heat-treated CNF show significant increases in their electrical conductivity even at low concentrations. This confirms that enhancement in the perfection of the fiber structure with consequent change in the morphological features plays a prominent role in affecting the electrical properties. Indeed heat-treated CNFs display a stiff structure and a smooth surface which tends to lower the thickness of the unavoidable insulating epoxy layer formed around the CNF which, in turn, plays a fundamental role in the electrical transport properties along the conducting clusters. This might be very beneficial in terms of electrical conductivity but might have negligible effect on the mechanical properties.
RSC Advances | 2015
Liberata Guadagno; Marialuigia Raimondo; Luigi Vertuccio; Marco Mauro; Gaetano Guerra; Khalid Lafdi; B. De Vivo; Patrizia Lamberti; Giovanni Spinelli; Vincenzo Tucci
The degree of graphite exfoliation and edge-carboxylated layers can be controlled and balanced to design lightweight materials characterized by both low electrical percolation thresholds (EPT) and improved mechanical properties. So far, this challenging task has been undoubtedly very hard to achieve. The results presented in this paper highlight the effect of exfoliation degree and the role of edge-carboxylated graphite layers to give self-assembled structures embedded in the polymeric matrix. Graphene layers inside the matrix may serve as building blocks of complex systems that could outperform the host matrix. Improvements in electrical percolation and mechanical performance have been obtained by a synergic effect due to finely balancing the degree of exfoliation and the chemistry of graphene edges which favors the interfacial interaction between polymer and carbon layers. In particular, for epoxy-based resins including two partially exfoliated graphite samples, differing essentially in the content of carboxylated groups, the percolation threshold reduces from 3 wt% down to 0.3 wt%, as the carboxylated group content increases up to 10 wt%. Edge-carboxylated nanosheets also increase the nanofiller/epoxy matrix interaction, determining a relevant reinforcement in the elastic modulus.
Journal of Electronic Packaging | 2008
Khalid Lafdi; Osama Mesalhy; Ahmed Elgafy
In the present work, the potential of using foam structures impregnated with phase change materials (PCMs) as heat sinks for cooling of electronic devices has been numerically studied. Different design parameters have been investigated such as foam properties (porosity, pore size, and thermal conductivity), heat sink shape, orientation, and use of internal fins inside the foam-PCM composite. Due to huge difference in thermal properties between the PCM and the solid matrix, two energy equation model has been adopted to solve the energy conservation equations. This model can handle local thermal nonequilibrium condition between the PCM and the solid matrix. The numerical model is based on volume averaging technique, and the finite volume method is used to discretize the heat diffusion equation. The findings show that, for steady heat generation, the shape and orientation of the composite heat sink have significant impact on the system performance. Conversely, in the case of power spike input, use of a PCM with low melting point and high latent heat is more efficient. DOI: 10.1115/1.2912185
Journal of Nanomaterials | 2008
Khalid Lafdi; William Fox; Matthew Matzek; Emel Yildiz
A successful integration of two independent phases with good adhesion is imperative for effective translation of superior carbon nanofiber filler properties into a physically superior carbon nanocomposite. Carbon nanofibers were subjected to electrochemical oxidation in 0.1 M nitric acid for varying times. The strength of adhesion between the nanofiber and an epoxy matrix was characterized by flexural strength and modulus. The surface functional groups formed and their concentration of nanofibers showed a dependence on the degree of oxidation. The addition of chemical functional groups on the nanofiber surface allows them to physically and chemically adhere to the continuous resin matrix. The chemical interaction with the continuous epoxy matrix results in the creation of an interphase region. The ability to chemically and physically interact with the epoxy region is beneficial to the mechanical properties of a carbon nanocomposite. A tailored degree of surface functionalization was found to increase adhesion to the matrix and increase flexural modulus.
Nanotechnology | 2002
Antonio Javier Zambano; Saikat Talapatra; Khalid Lafdi; M. T. Aziz; W. McMillin; Gabe Shaughnessy; Aldo D. Migone; Masako Yudasaka; Sumio Iijima; Fumio Kokai; K. Takahashi
Xenon adsorption studies were performed on aggregates of single-walled carbon nanohorns (SWNHs). The SWNHs were prepared in two different batches; the adsorption results from the two batches were essentially identical. Isotherms were performed in two groups of experiments: low-coverage data were used to measure the binding energy of Xe on the SWNHs; and full isotherms were measured to determine specific surface areas. The binding energy value for Xe on the SWNHs was intermediate between those for Xe on single-walled carbon nanotubes, and that for Xe on graphite. The specific surface area of the SWNHs was of the order of 250 m2 g-1.
Nanotechnology | 2017
Liberata Guadagno; Carlo Naddeo; Marialuigia Raimondo; Giuseppina Barra; Luigi Vertuccio; Salvatore Russo; Khalid Lafdi; Vincenzo Tucci; Giovanni Spinelli; Patrizia Lamberti
The focus of this study is to design new nano-modified epoxy formulations using carbon nanofillers, such as carbon nanotubes, carbon nanofibers and graphene-based nanoparticles (CpEG), that reduce the moisture content and provide additional functional performance. The chemical structure of epoxy mixture, using a non-stoichiometric amount of hardener, exhibits unique properties in regard to the water sorption for which the equilibrium concentration of water (C eq) is reduced up to a maximum of 30%. This result, which is very relevant for several industrial applications (aeronautical, shipbuilding industries, wind turbine blades, etc), is due to a strong reduction of the polar groups and/or sites responsible to bond water molecules. All nanofillers are responsible of a second phase at lower glass transition temperature (Tg). Compared with other carbon nanofillers, functionalized graphene-based nanoparticles exhibit the best performance in the multifunctionality. The lowest moisture content, the high performance in the mechanical properties, the low electrical percolation threshold (EPT) have been all ascribed to particular arrangements of the functionalized graphene sheets embedded in the polymeric matrix. Exfoliation degree and edge carboxylated groups are responsible of self-assembled architectures which entrap part of the resin fraction hindering the interaction of water molecules with the polar sites of the resin, also favouring the EPT paths and the attractive/covalent interactions with the matrix.