Khalid M. Naseem
Hull York Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Khalid M. Naseem.
Blood | 2013
Katie S. Wraith; Simbarashe Magwenzi; Ahmed Aburima; Yichuan Wen; David S. Leake; Khalid M. Naseem
Oxidized low-density lipoproteins (oxLDL) generated in the hyperlipidemic state may contribute to unregulated platelet activation during thrombosis. Although the ability of oxLDL to activate platelets is established, the underlying signaling mechanisms remain obscure. We show that oxLDL stimulate platelet activation through phosphorylation of the regulatory light chains of the contractile protein myosin IIa (MLC). oxLDL, but not native LDL, induced shape change, spreading, and phosphorylation of MLC (serine 19) through a pathway that was ablated under conditions that blocked CD36 ligation or inhibited Src kinases, suggesting a tyrosine kinase-dependent mechanism. Consistent with this, oxLDL induced tyrosine phosphorylation of a number of proteins including Syk and phospholipase C γ2. Inhibition of Syk, Ca(2+) mobilization, and MLC kinase (MLCK) only partially inhibited MLC phosphorylation, suggesting the presence of a second pathway. oxLDL activated RhoA and RhoA kinase (ROCK) to induce inhibitory phosphorylation of MLC phosphatase (MLCP). Moreover, inhibition of Src kinases prevented the activation of RhoA and ROCK, indicating that oxLDL regulates contractile signaling through a tyrosine kinase-dependent pathway that induces MLC phosphorylation through the dual activation of MLCK and inhibition of MLCP. These data reveal new signaling events downstream of CD36 that are critical in promoting platelet aggregation by oxLDL.
Blood | 2013
Ahmed Aburima; Katie S. Wraith; Zaher Raslan; Robert Law; Simbarashe Magwenzi; Khalid M. Naseem
Cyclic adenosine monophosphate (cAMP)-dependent signaling modulates platelet shape change through unknown mechanisms. We examined the effects of cAMP signaling on platelet contractile machinery. Prostaglandin E1 (PGE1)-mediated inhibition of thrombin-stimulated shape change was accompanied by diminished phosphorylation of myosin light chain (MLC). Since thrombin stimulates phospho-MLC through RhoA/Rho-associated, coiled-coil containing protein kinase (ROCK)-dependent inhibition of MLC phosphatase (MLCP), we examined the effects of cAMP on this pathway. Thrombin stimulated the membrane localization of RhoA and the formation of a signaling complex of RhoA/ROCK2/myosin phosphatase-targeting subunit 1 (MYPT1). This resulted in ROCK-mediated phosphorylation of MYPT1 on threonine 853 (thr(853)), the disassociation of the catalytic subunit protein phosphatase 1δ (PP1δ) from MYPT1 and inhibition of basal MLCP activity. Treatment of platelets with PGE1 prevented thrombin-induced phospho-MYPT1-thr(853) in a protein kinase A (PKA)-dependent manner. Examination of the molecular mechanisms revealed that PGE1 induced the phosphorylation of RhoA on serine(188) through a pathway requiring cAMP and PKA. This event inhibited the membrane relocalization of RhoA, prevented the association of RhoA with ROCK2 and MYPT1, attenuated the dissociation of PP1δ from MYPT1, and thereby restored basal MLCP activity leading to a decrease in phospho-MLC. These data reveal a new mechanism by which the cAMP-PKA signaling pathway regulates platelet function.
Blood | 2015
Simbarashe Magwenzi; Casey Woodward; Katie S. Wraith; Ahmed Aburima; Zaher Raslan; Huw S. Jones; Catriona McNeil; Stephen B. Wheatcroft; Nadira Yuldasheva; Maria Febbriao; Mark T. Kearney; Khalid M. Naseem
Oxidized low-density lipoprotein (oxLDL) promotes unregulated platelet activation in dyslipidemic disorders. Although oxLDL stimulates activatory signaling, it is unclear how these events drive accelerated thrombosis. Here, we describe a mechanism for oxLDL-mediated platelet hyperactivity that requires generation of reactive oxygen species (ROS). Under arterial flow, oxLDL triggered sustained generation of platelet intracellular ROS, which was blocked by CD36 inhibitors, mimicked by CD36-specific oxidized phospholipids, and ablated in CD36(-/-) murine platelets. oxLDL-induced ROS generation was blocked by the reduced NAD phosphate oxidase 2 (NOX2) inhibitor, gp91ds-tat, and absent in NOX2(-/-) mice. The synthesis of ROS by oxLDL/CD36 required Src-family kinases and protein kinase C (PKC)-dependent phosphorylation and activation of NOX2. In functional assays, oxLDL abolished guanosine 3,5-cyclic monophosphate (cGMP)-mediated signaling and inhibited platelet aggregation and arrest under flow. This was prevented by either pharmacologic inhibition of NOX2 in human platelets or genetic ablation of NOX2 in murine platelets. Platelets from hyperlipidemic mice were also found to have a diminished sensitivity to cGMP when tested ex vivo, a phenotype that was corrected by infusion of gp91ds-tat into the mice. This study demonstrates that oxLDL and hyperlipidemia stimulate the generation of NOX2-derived ROS through a CD36-PKC pathway and may promote platelet hyperactivity through modulation of cGMP signaling.
Journal of Thrombosis and Haemostasis | 2009
W. Roberts; A. Michno; Ahmed Aburima; Khalid M. Naseem
Summary.u2002 Background:u2002von Willebrand factor (VWF)‐mediated platelet adhesion and spreading at sites of vascular injury is a critical step in hemostasis. This process requires two individual receptors: glycoprotein Ib (GPIb)‐V‐IX and integrin αIIbβ3. However, little is known about the negative regulation of these events. Objectives:u2002To examine if the endogenous platelet inhibitor nitric oxide (NO) has differential effects on adhesion, spreading and aggregation induced by immobilized VWF. Results:u2002S‐nitrosoglutathione (GSNO) inhibited platelet aggregation on immobilized VWF under static and flow conditions, but had no effect on platelet adhesion. Primary signaling events underpinning the actions of NO required cyclic GMP but not protein kinase A. Dissecting the roles of GPIb and integrin αIIbβ3 demonstrated that NO targeted αIIbβ3‐mediated aggregation and spreading, but did not significantly influence GPIb‐mediated adhesion. To understand the relationship between the effects of NO on adhesion and subsequent aggregation, we evaluated the activation of αIIbβ3 on adherent platelets. NO reduced the phosphorylation of extracellular stimuli‐responsive kinase (ERK) and p38, required for integrin activation resulting in reduced binding of the activated αIIbβ3‐specific antibody PAC‐1 on adherent platelets. Detailed analysis of platelet spreading initiated by VWF demonstrated key roles for integrin αIIbβ3 and myosin light chain (MLC) phosphorylation. NO targeted both of these pathways by directly modulating integrin affinity and activating MLC phosphatase. Conclusion:u2002These data demonstrate that initial activation‐independent platelet adhesion to VWF via GPIb is resistant to NO, however, NO inhibits GPIb‐mediated activation of αIIbβ3 and MLC leading to reduced platelet spreading and aggregation.
Blood | 2012
C. Y. E. Fung; Sarah Jones; A. Ntrakwah; Khalid M. Naseem; Richard W. Farndale; Martyn P. Mahaut-Smith
Inhibition of Ca(2+) mobilization by cyclic nucleotides is central to the mechanism whereby endothelial-derived prostacyclin and nitric oxide limit platelet activation in the intact circulation. However, we show that ∼ 50% of the Ca(2+) response after stimulation of glycoprotein VI (GPVI) by collagen, or of Toll-like 2/1 receptors by Pam(3)Cys-Ser-(Lys)(4) (Pam(3)CSK(4)), is resistant to prostacyclin. At low agonist concentrations, the prostacyclin-resistant Ca(2+) response was predominantly because of P2X1 receptors activated by ATP release via a phospholipase-C-coupled secretory pathway requiring both protein kinase C and cytosolic Ca(2+) elevation. At higher agonist concentrations, an additional pathway was observed because of intracellular Ca(2+) release that also depended on activation of phospholipase C and, for TLR 2/1, PI3-kinase. Secondary activation of P2X1-dependent Ca(2+) influx also persisted in the presence of nitric oxide, delivered from spermine NONOate, or increased ectonucleotidase levels (apyrase). Surprisingly, apyrase was more effective than prostacyclin and NO at limiting secondary P2X1 activation. Dilution of platelets reduced the average extracellular ATP level without affecting the percentage contribution of P2X1 receptors to collagen-evoked Ca(2+) responses, indicating a highly efficient activation mechanism by local ATP. In conclusion, platelets possess inhibitor-resistant Ca(2+) mobilization pathways, including P2X1 receptors, that may be particularly important during early thrombotic or immune-dependent platelet activation.
Journal of Thrombosis and Haemostasis | 2011
Simbarashe Magwenzi; Ramzi Ajjan; K. F. Standeven; L. A. Parapia; Khalid M. Naseem
Summary.u2002 Background:u2002Activated coagulation factor XIII (FXIIIa) is a transglutaminase that crosslinks fibrin at sites of vascular injury. FXIIIa also associates with blood platelets, although its role in platelet function is unclear and requires clarification. Objectives:u2002To evaluate the ability of FXIIIa to support platelet adhesion and spreading under conditions of physiologic flow, and to identify the underpinning receptors and signaling events. Methods and Results:u2002Platelet adhesion to immobilized FXIIIa was measured by fluorescence microscopy, and signaling events were characterized by immunoblotting. Immobilized FXIIIa supported platelet adhesion and spreading under static conditions through mechanisms that were dually and differentially dependent on integrins αIIbβ3 and αvβ3. Platelet adhesion was independent of FXIIIa transglutaminase or protein disulfide isomerase activity. Moreover, adhesion was abolished by antibodies that prevented interaction with FXIIIa, but maintained when potential interactions with fibrinogen were blocked. Platelet adhesion to FXIIIa was reduced significantly by either the specific αIIbβ3 antagonist tirofiban or the selective αvβ3‐blocking antibody LM609, and abolished when they were used in combination. Importantly, platelet adhesion was preserved under venous and arterial flow conditions in which both integrins played essential roles. In contrast, FXIIIa stimulated the formation of filopodia and lamellipodia in adherent platelets that was mediated exclusively by αIIbβ3 and eliminated by the Src‐family inhibitor 4‐amino‐5‐(4‐methylphenyl‐7‐(t‐butyl)pyrazolo(3,4‐d)pyrimidine, indicating a tyrosine kinase‐dependent mechanism. Crucially, under conditions of arterial shear, FXIIIa accentuated platelet recruitment by von Willebrand factor and collagen. Conclusions:u2002Our data demonstrate a potential role for FXIIIa in supporting platelet adhesion at sites of vascular damage, particularly in association with other thrombogenic matrix proteins.
Clinical Endocrinology | 2013
Hassan Kahal; Ahmed Aburima; Tamas Ungvari; Alan S. Rigby; A. J. Dawson; Anne Marie Coady; Rebecca V. Vince; Ramzi Ajjan; Eric S. Kilpatrick; Khalid M. Naseem; Stephen L. Atkin
Previous studies investigating cardiovascular (CV) risk in obese women with polycystic ovary syndrome (PCOS) have been potentially confounded by not adequately accounting for body weight.
Biochemical Pharmacology | 2012
Elisabetta Liverani; Sreemoti Banerjee; Wayne Roberts; Khalid M. Naseem; Mauro Perretti
Graphical abstract
Platelets | 2011
Khalid M. Naseem; Wayne Roberts
In healthy blood vessels excessive platelet activation is counterbalanced by negative signalling cascades that modulate activation. This is achieved primarily through endothelial-derived nitric oxide (NO) and prostacyclin (PGI2). The biological effects of NO are mediated through stimulation soluble guanylyl cyclase (sGC) activation of cyclic AMP and GMP-mediated signalling pathways. In the present review examine our current understanding of NO-mediated regulation of platelets and highlight key issues that remain unresolved.
Platelets | 2015
Zaher Raslan; Khalid M. Naseem
Abstract Prostacyclin (PGI2) inhibits blood platelets through the activation of membrane adenylyl cyclases (ACs) and cyclic adenosine 3,5-monophosphate (cAMP)-mediated signalling. However, the molecular mechanism controlling cAMP signalling in blood platelet remains unclear, and in particular how individual isoforms of AC and protein kinase A (PKA) are coordinated to target distinct substrates in order to modulate platelet activation. In this study, we demonstrate that lipid rafts and the actin cytoskeleton may play a key role in regulating platelet responses to cAMP downstream of PGI2. Disruption of lipid rafts with methyl-beta-cyclodextrin (MβCD) increased platelet sensitivity to PGI2 and forskolin, a direct AC cyclase activator, resulting in greater inhibition of collagen-stimulated platelet aggregation. In contrast, platelet inhibition by the direct activator of PKA, 8-CPT-6-Phe-cAMP was unaffected by MβCD treatment. Consistent with the functional data, lipid raft disruption increased PGI2-stimulated cAMP formation and proximal PKA-mediated signalling events. Platelet inhibition, cAMP formation and phosphorylation of PKA substrates in response to PGI2 were also increased in the presence of cytochalasin D, indicating a role for actin cytoskeleton in signalling in response to PGI2. A potential role for lipid rafts in cAMP signalling is strengthened by our finding that a pool of ACV/VI and PKA was partitioned into lipid rafts. Our data demonstrate partial compartmentalisation of cAMP signalling machinery in platelets, where lipid rafts and the actin cytoskeleton regulate the inhibitory effects induced by PGI2. The increased platelet sensitivity to cAMP-elevating agents signalling upon raft and cytoskeleton disruption suggests that these compartments act to restrain basal cAMP signalling.