Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Khalil Bouyakdan is active.

Publication


Featured researches published by Khalil Bouyakdan.


American Journal of Human Genetics | 2010

Mutations in Centrosomal Protein CEP152 in Primary Microcephaly Families Linked to MCPH4

Duane L. Guernsey; Haiyan Jiang; Julie Hussin; Marc Arnold; Khalil Bouyakdan; Scott Perry; Tina Babineau-Sturk; Jill Beis; Nadine Dumas; Susan C. Evans; Meghan Ferguson; Makoto Matsuoka; Christine Macgillivray; Mathew Nightingale; Lysanne Patry; Andrea L. Rideout; Aidan Thomas; Andrew C. Orr; Ingrid Hoffmann; Jacques L. Michaud; David Meek; Mark Ludman; Mark E. Samuels

Primary microcephaly is a rare condition in which brain size is substantially diminished without other syndromic abnormalities. Seven autosomal loci have been genetically mapped, and the underlying causal genes have been identified for MCPH1, MCPH3, MCPH5, MCPH6, and MCPH7 but not for MCPH2 or MCPH4. The known genes play roles in mitosis and cell division. We ascertained three families from an Eastern Canadian subpopulation, each with one microcephalic child. Homozygosity analysis in two families using genome-wide dense SNP genotyping supported linkage to the published MCPH4 locus on chromosome 15q21.1. Sequencing of coding exons of candidate genes in the interval identified a nonconservative amino acid change in a highly conserved residue of the centrosomal protein CEP152. The affected children in these two families were both homozygous for this missense variant. The third affected child was compound heterozygous for the missense mutation plus a second, premature-termination mutation truncating a third of the protein and preventing its localization to centrosomes in transfected cells. CEP152 is the putative mammalian ortholog of Drosphila asterless, mutations in which affect mitosis in the fly. Published data from zebrafish are also consistent with a role of CEP152 in centrosome function. By RT-PCR, CEP152 is expressed in the embryonic mouse brain, similar to other MCPH genes. Like some other MCPH genes, CEP152 shows signatures of positive selection in the human lineage. CEP152 is a strong candidate for the causal gene underlying MCPH4 and may be an important gene in the evolution of human brain size.


Diabetes | 2015

Phenotypic Characterization of MIP-CreERT1Lphi Mice With Transgene-Driven Islet Expression of Human Growth Hormone

Daniel Oropeza; Nathalie Jouvet; Lionel Budry; Jonathan E. Campbell; Khalil Bouyakdan; Julie Lacombe; Gabrielle Perron; Valérie Bergeron; Joshua C. Neuman; Harpreet K. Brar; Rachel J. Fenske; Clemence Meunier; Sarah Sczelecki; Michelle E. Kimple; Daniel J. Drucker; Robert A. Screaton; Vincent Poitout; Mathieu Ferron; Thierry Alquier; Jennifer L. Estall

There is growing concern over confounding artifacts associated with β-cell–specific Cre-recombinase transgenic models, raising questions about their general usefulness in research. The inducible β-cell–specific transgenic (MIP-CreERT1Lphi) mouse was designed to circumvent many of these issues, and we investigated whether this tool effectively addressed concerns of ectopic expression and disruption of glucose metabolism. Recombinase activity was absent from the central nervous system using a reporter line and high-resolution microscopy. Despite increased pancreatic insulin content, MIP-CreERT mice on a chow diet exhibited normal ambient glycemia, glucose tolerance and insulin sensitivity, and appropriate insulin secretion in response to glucose in vivo and in vitro. However, MIP-CreERT mice on different genetic backgrounds were protected from high-fat/ streptozotocin (STZ)-induced hyperglycemia that was accompanied by increased insulin content and islet density. Ectopic human growth hormone (hGH) was highly expressed in MIP-CreERT islets independent of tamoxifen administration. Circulating insulin levels remained similar to wild-type controls, whereas STZ-associated increases in α-cell number and serum glucagon were significantly blunted in MIP-CreERT1Lphi mice, possibly due to paracrine effects of hGH-induced serotonin expression. These studies reveal important new insight into the strengths and limitations of the MIP-CreERT mouse line for β-cell research.


Journal of Biological Chemistry | 2013

Glucose Regulates Hypothalamic Long-chain Fatty Acid Metabolism via AMP-activated Kinase (AMPK) in Neurons and Astrocytes

Bouchra Taïb; Khalil Bouyakdan; Cecile Hryhorczuk; Demetra Rodaros; Stephanie Fulton; Thierry Alquier

Background: Hypothalamic long-chain fatty acids (LCFA) and glucose are critical for energy balance, but it is not known if their metabolism is coupled. Results: Glucose regulates hypothalamic metabolism of palmitate via AMP-activated kinase. Conclusion: Glucose and LCFA metabolism is coupled in a cell-type and LCFA-dependent manner. Significance: This is the first evidence for glucose regulation of LCFA metabolic fate in the hypothalamus. Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance.


Journal of Neurochemistry | 2015

A novel role for central ACBP/DBI as a regulator of long-chain fatty acid metabolism in astrocytes

Khalil Bouyakdan; Bouchra Taïb; Lionel Budry; Shangang Zhao; Demetra Rodaros; Ditte Neess; Susanne Mandrup; Nils J. Færgeman; Thierry Alquier

Acyl‐CoA‐binding protein (ACBP) is a ubiquitously expressed protein that binds intracellular acyl‐CoA esters. Several studies have suggested that ACBP acts as an acyl‐CoA pool former and regulates long‐chain fatty acids (LCFA) metabolism in peripheral tissues. In the brain, ACBP is known as Diazepam‐Binding Inhibitor, a secreted peptide acting as an allosteric modulator of the GABAA receptor. However, its role in central LCFA metabolism remains unknown. In the present study, we investigated ACBP cellular expression, ACBP regulation of LCFA intracellular metabolism, FA profile, and FA metabolism‐related gene expression using ACBP‐deficient and control mice. ACBP was mainly found in astrocytes with high expression levels in the mediobasal hypothalamus. We demonstrate that ACBP deficiency alters the central LCFA‐CoA profile and impairs unsaturated (oleate, linolenate) but not saturated (palmitate, stearate) LCFA metabolic fluxes in hypothalamic slices and astrocyte cultures. In addition, lack of ACBP differently affects the expression of genes involved in FA metabolism in cortical versus hypothalamic astrocytes. Finally, ACBP deficiency increases FA content and impairs their release in response to palmitate in hypothalamic astrocytes. Collectively, these findings reveal for the first time that central ACBP acts as a regulator of LCFA intracellular metabolism in astrocytes.


Molecular metabolism | 2015

PGC-1 coactivators in β-cells regulate lipid metabolism and are essential for insulin secretion coupled to fatty acids

Daniel Oropeza; Nathalie Jouvet; Khalil Bouyakdan; Gabrielle Perron; Lea-Jeanne Ringuette; Louis H. Philipson; Robert S. Kiss; Vincent Poitout; Thierry Alquier; Jennifer L. Estall

Objectives Peroxisome proliferator-activated receptor γ coactivator 1 (PPARGCA1, PGC-1) transcriptional coactivators control gene programs important for nutrient metabolism. Islets of type 2 diabetic subjects have reduced PGC-1α expression and this is associated with decreased insulin secretion, yet little is known about why this occurs or what role it plays in the development of diabetes. Our goal was to delineate the role and importance of PGC-1 proteins to β-cell function and energy homeostasis. Methods We investigated how nutrient signals regulate coactivator expression in islets and the metabolic consequences of reduced PGC-1α and PGC-1β in primary and cultured β-cells. Mice with inducible β-cell specific double knockout of Pgc-1α/Pgc-1β (βPgc-1 KO) were created to determine the physiological impact of reduced Pgc1 expression on glucose homeostasis. Results Pgc-1α and Pgc-1β expression was increased in primary mouse and human islets by acute glucose and palmitate exposure. Surprisingly, PGC-1 proteins were dispensable for the maintenance of mitochondrial mass, gene expression, and oxygen consumption in response to glucose in adult β-cells. However, islets and mice with an inducible, β-cell-specific PGC-1 knockout had decreased insulin secretion due in large part to loss of the potentiating effect of fatty acids. Consistent with an essential role for PGC-1 in lipid metabolism, β-cells with reduced PGC-1s accumulated acyl-glycerols and PGC-1s controlled expression of key enzymes in lipolysis and the glycerolipid/free fatty acid cycle. Conclusions These data highlight the importance of PGC-1s in coupling β-cell lipid metabolism to promote efficient insulin secretion.


Cell Reports | 2016

α/β-Hydrolase Domain 6 in the Ventromedial Hypothalamus Controls Energy Metabolism Flexibility

Alexandre Fisette; Stephanie Tobin; Léa Décarie-Spain; Khalil Bouyakdan; Marie-Line Peyot; S. R. Murthy Madiraju; Marc Prentki; Stephanie Fulton; Thierry Alquier

α/β-Hydrolase domain 6 (ABHD6) is a monoacylglycerol hydrolase that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG). Although complete or peripheral ABHD6 loss of function is protective against diet-induced obesity and insulin resistance, the role of ABHD6 in the central control of energy balance is unknown. Using a viral-mediated knockout approach, targeted endocannabinoid measures, and pharmacology, we discovered that mice lacking ABHD6 from neurons of the ventromedial hypothalamus (VMHKO) have higher VMH 2-AG levels in conditions of endocannabinoid recruitment and fail to physiologically adapt to key metabolic challenges. VMHKO mice exhibited blunted fasting-induced feeding and reduced food intake, energy expenditure, and adaptive thermogenesis in response to cold exposure, high-fat feeding, and dieting (transition to a low-fat diet). Our findings identify ABHD6 as a regulator of the counter-regulatory responses to major metabolic shifts, including fasting, nutrient excess, cold, and dieting, thereby highlighting the importance of ABHD6 in the VMH in mediating energy metabolism flexibility.


Behavioural Brain Research | 2016

DBI/ACBP loss-of-function does not affect anxiety-like behaviour but reduces anxiolytic responses to diazepam in mice.

Lionel Budry; Khalil Bouyakdan; Stephanie Tobin; Demetra Rodaros; Ann-Britt Marcher; Susanne Mandrup; Stephanie Fulton; Thierry Alquier

Diazepam is well known for its anxiolytic properties, which are mediated via activation of the GABAA receptor. Diazepam Binding Inhibitor (DBI), also called acyl-CoA binding protein (ACBP), is a ubiquitously expressed protein originally identified based on its ability to displace diazepam from its binding site on the GABAA receptor. Central administration of ACBP or its cleaved fragment, commonly referred to as endozepines, induces proconflict and anxiety-like behaviour in rodents. For this reason, ACBP is known as an anxiogenic peptide. However, the role of endogenous ACBP in anxiety-like behaviour and anxiolytic responses to diazepam has not been investigated. To address this question, we assessed anxiety behaviour and anxiolytic responses to diazepam in two complementary loss-of-function mouse models including astrocyte-specific ACBP KO (ACBP(GFAP) KO) and whole-body KO (ACBP KO) mice. Male and female ACBP(GFAP) KO and ACBP KO mice do not show significant changes in anxiety-like behaviour compared to control littermates during elevated plus maze (EPM) and open field (OF) tests. Surprisingly, ACBP(GFAP) KO and ACBP KO mice were unresponsive to the anxiolytic effect of a low dose of diazepam during EPM tests. In conclusion, our experiments using genetic ACBP loss-of-function models suggest that endozepines deficiency does not affect anxiety-like behaviour in mice and impairs the anxiolytic action of diazepam.


Archive | 2018

Rôle du récepteur aux acides gras oméga-3 GPR120 dans la réponse inflammatoire des cellules microgliales.

Jérôme Roy; Diane Bairamian; Geneviève Demers; Khalil Bouyakdan; Stephanie Fulton; Thierry Alquier


Archive | 2018

Rôle du récepteur aux acides gras oméga-3 GPR120 dans la réponse inflammatoire des cellules microgliales.

Jérôme Roy; Diane Bairamian; Geneviève Demers; Khalil Bouyakdan; Stephanie Fulton; Thierry Alquier


Archive | 2018

La perte de fonction génétique de lâAdipose-Triglycéride-Lipase (ATGL) dans les neurones de lâhypothalamus médio-basal induit un surpoids et des altérations métaboliques.

Romane Manceau; Khalil Bouyakdan; Alexandre Fisette; Demetra Rodaros; Grant Mitchell; Stephanie Fulton; Thierry Alquier

Collaboration


Dive into the Khalil Bouyakdan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lionel Budry

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Bouchra Taïb

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanne Mandrup

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge