Khanok Ratanakhanokchai
King Mongkut's University of Technology Thonburi
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Khanok Ratanakhanokchai.
Applied and Environmental Microbiology | 2006
Patthra Pason; Khin Lay Kyu; Khanok Ratanakhanokchai
ABSTRACT A facultatively anaerobic bacterium, Paenibacillus curdlanolyticus B-6, isolated from an anaerobic digester produces an extracellular xylanolytic-cellulolytic enzyme system containing xylanase, β-xylosidase, arabinofuranosidase, acetyl esterase, mannanase, carboxymethyl cellulase (CMCase), avicelase, cellobiohydrolase, β-glucosidase, amylase, and chitinase when grown on xylan under aerobic conditions. During growth on xylan, the bacterial cells were found to adhere to xylan from the early exponential growth phase to the late stationary growth phase. Scanning electron microscopic analysis revealed the adhesion of cells to xylan. The crude enzyme preparation was found to be capable of binding to insoluble xylan and Avicel. The xylanolytic-cellulolytic enzyme system efficiently hydrolyzed insoluble xylan, Avicel, and corn hulls to soluble sugars that were exclusively xylose and glucose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of a crude enzyme preparation exhibited at least 17 proteins, and zymograms revealed multiple xylanases and cellulases containing 12 xylanases and 9 CMCases. The cellulose-binding proteins, which are mainly in a multienzyme complex, were isolated from the crude enzyme preparation by affinity purification on cellulose. This showed nine proteins by SDS-PAGE and eight xylanases and six CMCases on zymograms. Sephacryl S-300 gel filtration showed that the cellulose-binding proteins consisted of two multienzyme complexes with molecular masses of 1,450 and 400 kDa. The results indicated that the xylanolytic-cellulolytic enzyme system of this bacterium exists as multienzyme complexes.
Enzyme and Microbial Technology | 2002
Min-Jen Tseng; Mee-Nagan Yap; Khanok Ratanakhanokchai; Khin Lay Kyu; Shui-Tein Chen
Two xylanases from Bacillus firmus were purified to homogeneity by gel filtration and ion-exchange chromatography. These enzymes have molecular weights of 45 kDa and 23 kDa, respectively, and both show enzymatic activity over the pH range of 5.0–11.0 at 37°C. These enzymes hydrolyzed xylan from birchwood to release mainly the products of xylose, xylotriose and xylohexose, thus indicating that the xylanases act preferentially toward the internal glycosidic bonds of xylo-oligosaccharides. However, the two xylanases show different modes of action, and a combination of both is likely to lead to concerted degradation of xylan down to the mono- and disaccharides.
Enzyme and Microbial Technology | 2000
Pattana Ponpium; Khanok Ratanakhanokchai; Khin Lay Kyu
The extracellular form of cellulosome-type multienzyme complex of thermophilic Bacteroides sp. strain P-1 which was isolated from the anaerobic digester, is described. Multienzyme complex was isolated from the culture supernatant by an adsorption-desorption affinity chromatography on microcrystalline cellulose. The isolated multienzyme complex was found to form a complex that exhibited a high molecular weight (estimated at more than 1400 kDa) and was quite stable, requiring strong denaturing condition for dissociation. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate resolved multienzyme complex into at least 12 subunits with the molecular weight range of 49 to 209 kDa, respectively. The isolated multienzyme complex showed cellulose-binding ability, cellulase and xylanase activities and effected the hydrolysis of crystalline cellulose and lignocellulosic materials in the form of corncob, corn hull, rice straw, and sugarcane bagasse.
Journal of Bioscience and Bioengineering | 2009
Rattiya Waeonukul; Khin Lay Kyu; Kazuo Sakka; Khanok Ratanakhanokchai
A multienzyme complex, cellulosome, of the facultatively anaerobic bacterium, Paenibacillus curdlanolyticus B-6 was produced on microcrystalline cellulose (Avicel) under aerobic conditions. During growth on Avicel, the bacterial cells were found to be capable of adhesion to Avicel by scanning electron microscopic (SEM) analysis. The multienzyme complex of P. curdlanolyticus B-6 was isolated from the crude enzyme preparation by gel filtration chromatography on Sephacryl S-300 and affinity purification on cellulose. The isolated multienzyme complex was able to bind to both Avicel and insoluble xylan and consists of cellulolytic and xylanolytic enzymes such as avicelase, carboxymethyl cellulase (CMCase), cellobiohydrolase, beta-glucosidase, xylanase, beta-xylosidase and alpha-l-arabinofuranosidase. The molecular mass of the complex was estimated to be 1600 kDa. It composed of at least 12 proteins on SDS-PAGE and 10 CMCases and 11 xylanases on zymograms. The isolated multienzyme complex could degrade the raw lignocellulosic substances effectively.
Folia Microbiologica | 2013
Paripok Phitsuwan; Natta Laohakunjit; Orapin Kerdchoechuen; Khin Lay Kyu; Khanok Ratanakhanokchai
Cellulase (CEL) presently constitutes a major group of industrial enzyme based on its diverse ranges of utilization. Apart from such current and well-established applications—as in cotton processing, paper recycling, detergent formulation, juice extraction, and animal feed additives—their uses in agricultural biotechnology and bioenergy have been exploited. Supplementation of CELs to accelerate decomposition of plant residues in soil results in improved soil fertility. So far, applying CELs/antagonistic cellulolytic fungi to crops has shown to promote plant growth performance, including enhanced seed germination and protective effects. Their actions are believed mainly to trigger plant defense mechanisms and/or to act as biocontrol agents that mediate disease suppression. However, the exact interaction between the enzymes/fungi and plants has not been clearly elucidated. Under mild conditions, removal of plant cell wall polysaccharides by CELs for protoplast preparation results in reduced protoplast damage and increased viability and yields. CELs have recently shown great potential in enzyme aid extraction of bioactive compounds from plant materials before selective extraction through enhancing release of target molecules, especially those associated with the wall matrix. To date, attempts have been made to formulate CEL preparation for cellulosic-based bioethanol production. The high cost of CELs has created a bottleneck, resulting in an uneconomic production process. The utilization of low-cost carbohydrates, strain improvement, and gene manipulations has been alternatively aimed at reducing the cost of CEL production. In this review, we focus on and discuss current knowledge of CELs and their applications in agriculture, biotechnology, and bioenergy.
Journal of Bioscience and Bioengineering | 2010
Somphit Sornyotha; Khin Lay Kyu; Khanok Ratanakhanokchai
The objective of this work was to remove linamarin in starch from cassava (Manihot esculenta Crantz cv. KU-50) roots, a high-cyanogen variety by using plant cell wall-degrading enzymes, xylanase and cellulase. The combination of xylanase from Bacillus firmus K-1 and xylanase and cellulase from Paenibacillus curdlanolyticus B-6 at the ratio of 1:9 showed the maximum synergism at 1.8 times for hydrolyzing cassava cortex cell walls and releasing linamarase. Combined enzyme treatment enhanced linamarin liberation from the parenchyma by 90%. In addition, when the combined enzymes were applied for detoxification during cassava starch production, a low-cyanide-product was obtained with decreased linamarin concentration (96%) compared to non-enzyme treated tissues. Based on these results, xylanase and cellulase treatment is a good method for low-cyanide-cassava starch production and could be applied for detoxification of cassava products during processing.
Bioresource Technology | 2012
Rattiya Waeonukul; Akihiko Kosugi; Chakrit Tachaapaikoon; Patthra Pason; Khanok Ratanakhanokchai; Panida Prawitwong; Lan Deng; Masayoshi Saito; Yutaka Mori
Clostridium thermocellum is known to produce the cellulosomes with efficient plant cell wall degradation ability. To bring out the maximum cellulolytic ability of the cellulosomes, it is necessary to eliminate the end product inhibition by cellobiose. Combinations of β-glucosidases from thermophilic anaerobic bacteria and Aspergillusniger and C.thermocellum S14 cellulosomes were evaluated for optimization of cellulose degradation. β-Glucosidase (CglT) from Thermoanaerobacterbrockii, in combination with cellulosomes, exhibited remarkable saccharification ability for microcrystalline cellulose. When rice straw, soaked in 28% aqueous ammonia for 7 days at 60°C, was hydrolyzed by an enzyme loading combination of 2mg cellulosome and 10 units CglT per g glucan, 91% of glucan was hydrolyzed to glucose, indicating roughly1/10 the enzyme load of a Trichodermareesei cellulase (Celluclast 1.5L) and Novozyme-188 combination is enough for the combination of C.thermocellum S14 cellulosomes and CglT to achieve the same level of saccharification of rice straw.
Biodegradation | 2012
Chakrit Tachaapaikoon; Akihiko Kosugi; Patthra Pason; Rattiya Waeonukul; Khanok Ratanakhanokchai; Khin Lay Kyu; Takamitsu Arai; Yoshinori Murata; Yutaka Mori
The anaerobic thermophilic bacterium, Clostridium thermocellum, is a potent cellulolytic microorganism that produces large extracellular multienzyme complexes called cellulosomes. To isolate C.thermocellum organisms that possess effective cellulose-degrading ability, new thermophilic cellulolytic strains were screened from more than 800 samples obtained mainly from agriculture residues in Thailand using microcrystalline cellulose as a carbon source. A new strain, C. thermocellum S14, having high cellulose-degrading ability was isolated from bagasse paper sludge. Cellulosomes prepared from S14 demonstrated faster degradation of microcrystalline cellulose, and 3.4- and 5.6-fold greater Avicelase activity than those from C. thermocellum ATCC27405 and JW20 (ATCC31449), respectively. Scanning electron microscopic analysis showed that S14 had unique cell surface features with few protuberances in contrast to the type strains. In addition, the cellulosome of S14 was resistant to inhibition by cellobiose that is a major end product of cellulose hydrolysis. Saccharification tests conducted using rice straw soaked with sodium hydroxide indicated the cellulosome of S14 released approximately 1.5-fold more total sugars compared to that of ATCC27405. This newly isolated S14 strain has the potential as an enzyme resource for effective lignocellulose degradation.
Fems Yeast Research | 2015
Pitchya Tangsombatvichit; Marta V. Semkiv; Andriy A. Sibirny; Laran T. Jensen; Khanok Ratanakhanokchai; Nitnipa Soontorngun
The ability to rapidly respond to nutrient changes is a fundamental requirement for cell survival. Here, we show that the zinc cluster regulator Znf1 responds to altered nutrient signals following glucose starvation through the direct control of genes involved in non-fermentative metabolism, including those belonged to the central pathways of gluconeogenesis (PCK1, FBP1 and MDH2), glyoxylate shunt (MLS1 and ICL1) and the tricarboxylic acid cycle (ACO1), which is demonstrated by Znf1-binding enrichment at these promoters during the glucose-ethanol shift. Additionally, reduced Pck1 and Fbp1 enzymatic activities correlate well with the data obtained from gene transcription analysis. Cells deleted for ZNF1 also display defective mitochondrial morphology with unclear structures of the inner membrane cristae when grown in ethanol, in agreement with the substantial reduction in the ATP content, suggesting for roles of Znf1 in maintaining mitochondrial morphology and function. Furthermore, Znf1 also plays a role in tolerance to pH and osmotic stress, especially during the oxidative metabolism. Taken together, our results clearly suggest that Znf1 is a critical transcriptional regulator for stress adaptation during non-fermentative growth with some partial overlapping targets with previously reported regulators in Saccharomyces cerevisiae.
Bioresource Technology | 2016
Paripok Phitsuwan; Kazuo Sakka; Khanok Ratanakhanokchai
Napier grass is a promising energy crop in the tropical region. Feasible alkaline pretreatment technologies, including NaOH, Ca(OH)2, NH3, and alkaline H2O2 (aH2O2), were used to delignify lignocellulose with the aim of improving glucose recovery from Napier grass stem cellulose via enzymatic saccharification. The influences of the pretreatments on structural alterations were examined using SEM, FTIR, XRD, and TGA, and the relationships between these changes and the enzymatic digestibility of cellulose were addressed. The extensive removal of lignin (84%) in NaOH-pretreated fibre agreed well with the high glucan conversion rate (94%) by enzymatic hydrolysis, while the conversion rates for fibre pretreated with Ca(OH)2, NH3, and aH2O2 approached 60%, 51%, and 42%, respectively. The substantial solubilisation of lignin created porosity, allowing increased cellulose accessibility to cellulases in NaOH-pretreated fibre. In contrast, high lignin content, lignin redeposition on the surface, and residual internal lignin and hemicellulose impeded enzymatic performance in Ca(OH)2-, NH3-, and aH2O2-pretreated fibres, respectively.