Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kharudin Ali is active.

Publication


Featured researches published by Kharudin Ali.


Sensors | 2016

Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

Damhuji Rifai; Ahmed N. Abdalla; Kharudin Ali; Ramdan Razali

Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.


Sensors | 2017

An Eddy Current Testing Platform System for Pipe Defect Inspection Based on an Optimized Eddy Current Technique Probe Design

Damhuji Rifai; Ahmed N. Abdalla; Ramdan Razali; Kharudin Ali; Moneer A. Faraj

The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient.


Iet Circuits Devices & Systems | 2017

A Review on System Development in Eddy Current Testing and Technique for Defect Classification and Characterization

Kharudin Ali; Ahmed N. Abdalla; Damhuji Rifai; Moneer A. Faraj

Eddy current testing (ECT) is one of the non-destructive evaluation techniques widely used, especially in oil and gas industries. It characterized noisy data to the less-than-perfect detection and as an indication of serious false alarm problem. However, not many researchers have described in detail the intelligent ECT crack detection system. This paper introduces a review of ECT technique and factors that affect the signal fundamental according to the hardware and software development. First, describe the magnetic excitation resources including the sinusoidal and pulse exciting signal. Second, outlines explanation about the ECT probe. The explanations are more about the probes development for air core probe and giant magnetoresistance probe. Third, there is discussion on ECT circuit that used including ECT system, ECT rotating magnetic field and application measurement for optimal control parameters. The defect in characterizations and measurement are discussed on the fourth part of this paper. The fourth part discusses the ECT lift-off compensation including the lift-off and application of intelligent technique in ECT. The limitations of lift-off for coil probe and compensation techniques also discussed in this part. Finally, a comprehensive review of previous studies on the application of intelligent ECT crack detection in nondestructive ECT is presented.


Sensors | 2018

A Novel Eddy Current Testing Error Compensation Technique Based on Mamdani-Type Fuzzy Coupled Differential and Absolute Probes

Ahmed N. Abdalla; Kharudin Ali; Johnny K. S. Paw; Damhuji Rifai; Moneer A. Faraj

Eddy current testing (ECT) is an accurate, widely used and well-understood inspection technique, particularly in the aircraft and nuclear industries. The coating thickness or lift-off will influence the measurement of defect depth on pipes or plates. It will be an uncertain decision condition whether the defects on a workpiece are cracks or scratches. This problem can lead to the occurrence of pipe leakages, besides causing the degradation of a company’s productivity and most importantly risking the safety of workers. In this paper, a novel eddy current testing error compensation technique based on Mamdani-type fuzzy coupled differential and absolute probes was proposed. The general descriptions of the proposed ECT technique include details of the system design, intelligent fuzzy logic design and Simulink block development design. The detailed description of the proposed probe selection, design and instrumentation of the error compensation of eddy current testing (ECECT) along with the absolute probe and differential probe relevant to the present research work are presented. The ECECT simulation and hardware design are proposed, using the fuzzy logic technique for the development of the new methodology. The depths of the defect coefficients of the probe’s lift-off caused by the coating thickness were measured by using a designed setup. In this result, the ECECT gives an optimum correction for the lift-off, in which the reduction of error is only within 0.1% of its all-out value. Finally, the ECECT is used to measure lift-off in a range of approximately 1 mm to 5 mm, and the performance of the proposed method in non-linear cracks is assessed.


Indonesian Journal of Electrical Engineering and Computer Science | 2018

Fuzzy Logic Enhanced Direct Torque Control with Space Vector Modulation

Jian-Ding Tan; S. P. Koh; S. K. Tiong; Kharudin Ali; Ahmed N. Abdalla

Received Mar 3, 2018 Revised Apr 11, 2018 Accepted Apr 21, 2018 Paintball has gained a huge popularity in Malaysia with growing number of tournaments organized nationwide. Currently, Ideal Pro Event, one of the paintball organizer found difficulties to pair a suitable opponent to against one another in a tournament. This is largely due to the manual matchmaking method that only randomly matches one team with another. Consequently, it is crucial to ensure a balanced tournament bracket where eventual winners and losers not facing one another in the very first round. This study proposes an intelligent matchmaking using Particle Swarm Optimization (PSO) and tournament management system for paintball organizers. PSO is a swarm intelligence algorithm that optimizes problems by gradually improving its current solutions, therefore countenancing the tournament bracket to be continually improved until the best is produced. Indirectly, through the development of the system, it is consider as an intelligence business idea since it able to save time and enhance the company productivity. This algorithm has been tested using 3 size of population; 100, 1000 and 10,000. As a result, the speed of convergence is consistent and has not been affected through big population.N. N. S. Abdul Rahman, N.M. Saad, A. R. Abdullah, M. R. M. Hassan, M. S. S. M. Basir, N. S. M. Noor 1,2,4,6Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia 2,3Center for Robotics and Industrial Automation, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia 3,5Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, MalaysiaLight rail transit (LRT), or fast tram is urban public transport using rolling stock similar to a tramway, but operating at a higher capacity, and often on an exclusive right-of-way. Indonesia as one of developing countries has been developed the LRT in two cities of Indonesia, Palembang and Jakarta. There are opinions toward the development of LRT, negative and positive opinions. To reveal the level of LRT development acceptance, this research uses machine learning approach to analyze the data which is gathered through social media. By conducting this paper, the data is modeled and classified in order to analyze the social sentiment towards the LRT development.Mohamad, S., Nasir, F.M., Sunar, M.S., Isa, K., Hanifa, R.M., Shah, S.M., Ribuan, M.N., Ahmad, A. 1,4,6,7,8Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia 1,2,3UTM-IRDA Digital Media Centre, Media and Game Innovation Centre of Excellence, Universiti Teknologi Malaysia, Johor, Malaysia 1,2,3Faculty of Computing, Universiti Teknologi Malaysia, Johor, Malaysia 5Centre for Diploma Studies, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia 6Research Centre for Applied Electromagnetics, Universiti Tun Hussein Onn Malaysia, Johor, MalaysiaReceived Jan 31, 2018 Revised Apr 21, 2018 Accepted Apr 30, 2018 Bluetooth is an emerging mobile ad-hoc network that accredits wireless communication to connect various short range devices. A single hop network called piconet is the basic communication topology of bluetooth which allows only eight active devices for communication among them seven are active slaves controlled by one master. Multiple piconets are interconnected through a common node, known as Relay, to form a massive network called as Scatternet. It is obvious that the performance of Scatternet scheduling is highly dependent and directly proportionate with the performance of the Relay node. In contrary, by reducing the number of Relays, it may lead to poor performance, since every Relay has to perform and support several piconet connections. The primary focus of this study is to observe the performance metrics that affects the inter-piconet scheduling since the Relay node’s role is like switch between multiple piconets. In this paper, we address and analyze the performance issues to be taken into consideration for efficient data flow in Scatternet based on Relay node.


ieee-embs conference on biomedical engineering and sciences | 2012

Development of EMG measurement system to control mobile robot using frontalis and zygomaticus major muscles

Ahmad Joraimee Mohamad; Shahrul Na'im Sidek; Ahmad Jazlan Haja Mohideen; Mohd Tarmizi Ibrahim; Kharudin Ali

The paper discusses the development of the facial-muscle controlled robotic systems. The main work in the research is to capture the facial muscle signal activities and leverage the information to control a small mobile robot movement. The characteristic of the facial muscle activities is discussed thoroughly in this paper. The EMG measurement system is developed to condition the signal before being fed into the controller of the mobile robot system. Three channels EMG measurement systems consisting of a set of instrumentation amplifiers INA128P and four precision amplifiers OP177 are used to construct the circuit. The signal captured is amplified by 8,415 factor and filtered using bandpass filter from 50Hz to 500Hz frequency range. PIC16F877A starter kit is used to convert the analog signal into the digital form before the data is transmitted to the receiver of the mobile robot by using XBee module upon which it responds accordingly. The system is interactive and could be an exciting alternative to relieve boredom of patient doing rehabilitation exercise post stroke.


Procedia Engineering | 2012

Advanced Control of Hybrid-PLC System

Kharudin Ali; Ruzlaini Ghoni; Ahmed N. Abdalla


Applied Sciences | 2017

Adaptive Neuro-Fuzzy Inference System Model Based on the Width and Depth of the Defect in an Eddy Current Signal

Moneer A. Faraj; Fahmi Samsuri; Ahmed N. Abdalla; Damhuji Rifai; Kharudin Ali


Indian journal of science and technology | 2016

Design and Implementation of Portable Mobile Phone Charger using Multi Directional Wind Turbine Extract

Kharudin Ali; Wan Syahidah Wan Mohd; Damhuji Rifai; Muaz Ishtiyaq Ahmed; Asyraf Muzzakir; Tg Ammar Asyraf


Archive | 2017

Lift-Off Detection System Using Error Compensated Eddy Current Testing

Kharudin Ali; Ahmed N. Abdalla; Damhuji Rifae

Collaboration


Dive into the Kharudin Ali's collaboration.

Top Co-Authors

Avatar

Ahmed N. Abdalla

Universiti Malaysia Pahang

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Moneer A. Faraj

Universiti Malaysia Pahang

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramdan Razali

Universiti Malaysia Pahang

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmad Jazlan Haja Mohideen

International Islamic University Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fahmi Samsuri

Universiti Malaysia Pahang

View shared research outputs
Researchain Logo
Decentralizing Knowledge