Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Khawja A. Usmani is active.

Publication


Featured researches published by Khawja A. Usmani.


Drug Metabolism and Disposition | 2006

Inhibition of the human liver microsomal and human cytochrome P450 1A2 and 3A4 metabolism of estradiol by deployment-related and other chemicals.

Khawja A. Usmani; Taehyeon M. Cho; Randy L. Rose; Ernest Hodgson

Cytochromes P450 (P450s) are major catalysts in the metabolism of xenobiotics and endogenous substrates such as estradiol (E2). It has previously been shown that E2 is predominantly metabolized in humans by CYP1A2 and CYP3A4 with 2-hydroxyestradiol (2-OHE2) the major metabolite. This study examines effects of deployment-related and other chemicals on E2 metabolism by human liver microsomes (HLM) and individual P450 isoforms. Kinetic studies using HLM, CYP3A4, and CYP1A2 showed similar affinities (Km) for E2 with respect to 2-OHE2 production. Vmax and CLint values for HLM are 0.32 nmol/min/mg protein and 7.5 μl/min/mg protein; those for CYP3A4 are 6.9 nmol/min/nmol P450 and 291 μl/min/nmol P450; and those for CYP1A2 are 17.4 nmol/min/nmol P450 and 633 μl/min/nmol P450. Phenotyped HLM use showed that individuals with high levels of CYP1A2 and CYP3A4 have the greatest potential to metabolize E2. Preincubation of HLM with a variety of chemicals, including those used in military deployments, resulted in varying levels of inhibition of E2 metabolism. The greatest inhibition was observed with organophosphorus compounds, including chlorpyrifos and fonofos, with up to 80% inhibition for 2-OHE2 production. Carbaryl, a carbamate pesticide, and naphthalene, a jet fuel component, inhibited ca. 40% of E2 metabolism. Preincubation of CYP1A2 with chlorpyrifos, fonofos, carbaryl, or naphthalene resulted in 96, 59, 84, and 87% inhibition of E2 metabolism, respectively. Preincubation of CYP3A4 with chlorpyrifos, fonofos, deltamethrin, or permethrin resulted in 94, 87, 58, and 37% inhibition of E2 metabolism. Chlorpyrifos inhibition of E2 metabolism is shown to be irreversible.


Drug Metabolism and Disposition | 2012

Identification of Human Cytochrome P450 and Flavin-Containing Monooxygenase Enzymes Involved in the Metabolism of Lorcaserin, a Novel Selective Human 5-Hydroxytryptamine 2C Agonist

Khawja A. Usmani; Weichao G. Chen; Abu Sadeque

Lorcaserin, a selective serotonin 5-hydroxytryptamine 2C receptor agonist, is being developed for weight management. The oxidative metabolism of lorcaserin, mediated by recombinant human cytochrome P450 (P450) and flavin-containing monooxygenase (FMO) enzymes, was examined in vitro to identify the enzymes involved in the generation of its primary oxidative metabolites, N-hydroxylorcaserin, 7-hydroxylorcaserin, 5-hydroxylorcaserin, and 1-hydroxylorcaserin. Human CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP3A4, and FMO1 are major enzymes involved in N-hydroxylorcaserin; CYP2D6 and CYP3A4 are enzymes involved in 7-hydroxylorcaserin; CYP1A1, CYP1A2, CYP2D6, and CYP3A4 are enzymes involved in 5-hydroxylorcaserin; and CYP3A4 is an enzyme involved in 1-hydroxylorcaserin formation. In 16 individual human liver microsomal preparations (HLM), formation of N-hydroxylorcaserin was correlated with CYP2B6, 7-hydroxylorcaserin was correlated with CYP2D6, 5-hydroxylorcaserin was correlated with CYP1A2 and CYP3A4, and 1-hydroxylorcaserin was correlated with CYP3A4 activity at 10.0 μM lorcaserin. No correlation was observed for N-hydroxylorcaserin with any P450 marker substrate activity at 1.0 μM lorcaserin. N-Hydroxylorcaserin formation was not inhibited by CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, and CYP3A4 inhibitors at the highest concentration tested. Furafylline, quinidine, and ketoconazole, selective inhibitors of CYP1A2, CYP2D6, and CYP3A4, respectively, inhibited 5-hydroxylorcaserin (IC50 = 1.914 μM), 7-hydroxylorcaserin (IC50 = 0.213 μM), and 1-hydroxylorcaserin formation (IC50 = 0.281 μM), respectively. N-Hydroxylorcaserin showed low and high Km components in HLM and 7-hydroxylorcaserin showed lower Km than 5-hydroxylorcaserin and 1-hydroxylorcaserin in HLM. The highest intrinsic clearance was observed for N-hydroxylorcaserin, followed by 7-hydroxylorcaserin, 5-hydroxylorcaserin, and 1-hydroxylorcaserin in HLM. Multiple human P450 and FMO enzymes catalyze the formation of four primary oxidative metabolites of lorcaserin, suggesting that lorcaserin has a low probability of drug-drug interactions by concomitant medications.


Drug Metabolism and Disposition | 2012

Identification of Human UDP-Glucuronosyltransferases Involved in N-Carbamoyl Glucuronidation of Lorcaserin

Abu Sadeque; Khawja A. Usmani; Safet Palamar; Matthew A. Cerny; Weichao G. Chen

Lorcaserin, a selective serotonin 5-HT2C receptor agonist, is a weight management agent in clinical development. Lorcaserin N-carbamoyl glucuronidation governs the predominant excretory pathway of lorcaserin in humans. Human UDP-glucuronosyltransferases (UGTs) responsible for lorcaserin N-carbamoyl glucuronidation are identified herein. Lorcaserin N-carbamoyl glucuronide formation was characterized by the following approaches: metabolic screening using human tissues (liver, kidney, intestine, and lung) and recombinant enzymes, kinetic analyses, and inhibition studies. Whereas microsomes from all human tissues studied herein were found to be catalytically active for lorcaserin N-carbamoyl glucuronidation, liver microsomes were the most efficient. With recombinant UGT enzymes, lorcaserin N-carbamoyl glucuronidation was predominantly catalyzed by three UGT2Bs (UGT2B7, UGT2B15, and UGT2B17), whereas two UGT1As (UGT1A6 and UGT1A9) played a minor role. UGT2B15 was most efficient, with an apparent Km value of 51.6 ± 1.9 μM and Vmax value of 237.4 ± 2.8 pmol/mg protein/min. The rank order of catalytic efficiency of human UGT enzymes for lorcaserin N-carbamoyl glucuronidation was UGT2B15 > UGT2B7 > UGT2B17 > UGT1A9 > UGT1A6. Inhibition of lorcaserin N-carbamoyl glucuronidation activities of UGT2B7, UGT2B15, and UGT2B17 in human liver microsomes by mefenamic acid, bisphenol A, and eugenol further substantiated the involvement of these UGT2B isoforms. In conclusion, multiple human UGT enzymes catalyze N-carbamoyl glucuronidation of lorcaserin; therefore, it is unlikely that inhibition of any one of these UGT activities will lead to significant inhibition of the lorcaserin N-carbamoyl glucuronidation pathway. Thus, the potential for drug-drug interaction by concomitant administration of a drug(s) that is metabolized by any of these UGTs is remote.


ACS Medicinal Chemistry Letters | 2014

Discovery of APD334: Design of a Clinical Stage Functional Antagonist of the Sphingosine-1-phosphate-1 Receptor.

Daniel J. Buzard; Sun Hee Kim; Luis Lopez; Andrew M. Kawasaki; Xiuwen Zhu; Jeanne V. Moody; Lars Thoresen; Imelda Calderon; Brett Ullman; Sangdon Han; Juerg Lehmann; Tawfik Gharbaoui; Dipanjan Sengupta; Lorene Calvano; Antonio Garrido Montalban; You-An Ma; Carleton R. Sage; Yinghong Gao; Graeme Semple; Jeff Edwards; Jeremy Barden; Michael M. Morgan; Weichao Chen; Khawja A. Usmani; Chuan Chen; Abu Sadeque; Ronald Christopher; Jayant Thatte; Lixia Fu; Michelle Solomon

APD334 was discovered as part of our internal effort to identify potent, centrally available, functional antagonists of the S1P1 receptor for use as next generation therapeutics for treating multiple sclerosis (MS) and other autoimmune diseases. APD334 is a potent functional antagonist of S1P1 and has a favorable PK/PD profile, producing robust lymphocyte lowering at relatively low plasma concentrations in several preclinical species. This new agent was efficacious in a mouse experimental autoimmune encephalomyelitis (EAE) model of MS and a rat collagen induced arthritis (CIA) model and was found to have appreciable central exposure.


ACS Medicinal Chemistry Letters | 2014

(7-Benzyloxy-2,3-dihydro-1H-pyrrolo[1,2-a]indol-1-yl)acetic Acids as S1P1 Functional Antagonists

Daniel J. Buzard; Luis Lopez; Jeanne V. Moody; Andrew M. Kawasaki; Thomas O. Schrader; Michelle Kasem; Ben Johnson; Xiuwen Zhu; Lars Thoresen; Sun Hee Kim; Tawfik Gharbaoui; Dipanjan Sengupta; Lorene Calvano; Ashwin M. Krishnan; Yinghong Gao; Graeme Semple; Jeff Edwards; Jeremy Barden; Michael M. Morgan; Khawja A. Usmani; Chuan Chen; Abu Sadeque; Weichao Chen; Ronald Christopher; Jayant Thatte; Lixia Fu; Michelle Solomon; Kevin Whelan; Hussien A. Al-Shamma; Joel Gatlin

S1P1 is a validated target for treatment of autoimmune disease, and functional antagonists with superior safety and pharmacokinetic properties are being sought as second generation therapeutics. We describe the discovery and optimization of (7-benzyloxy-2,3-dihydro-1H-pyrrolo[1,2-a]indol-1-yl)acetic acids as potent, centrally available, direct acting S1P1 functional antagonists, with favorable pharmacokinetic and safety properties.


Current protocols in immunology | 2004

Human Cytochrome P450: Metabolism of Testosterone by CYP3A4 and Inhibition by Ketoconazole

Khawja A. Usmani; Jun Tang

This unit describes methods for measuring CYP3A4 activity using testosterone as a specific substrate, and for measuring CYP3A4 inhibition using ketoconazole as a selective inhibitor of testosterone oxidation. CYP3A4 is one of the most important and most abundant drug‐metabolizing CYP isoforms in human liver microsomes (∼40% of total CYP), and it has the broadest substrate specificity. It is important to determine whether CYP3A4 is involved in its metabolism.


Pharmacogenetics | 2003

Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups.

Su-Jun Lee; Khawja A. Usmani; Brian Chanas; Burhan I. Ghanayem; Tina Xi; Ernest Hodgson; Harvey W. Mohrenweiser; Joyce A. Goldstein


Drug Metabolism and Disposition | 2003

Inhibition and activation of the human liver microsomal and human cytochrome P450 3A4 metabolism of testosterone by deployment-related chemicals

Khawja A. Usmani; Randy L. Rose; Ernest Hodgson


Drug Metabolism and Disposition | 2002

In Vitro Human Metabolism and Interactions of Repellent N,N-Diethyl-m-Toluamide

Khawja A. Usmani; Randy L. Rose; Joyce A. Goldstein; Wesley G. Taylor; Alan A. Brimfield; Ernest Hodgson


Chemico-Biological Interactions | 2004

In vitro metabolism of carbofuran by human, mouse, and rat cytochrome P450 and interactions with chlorpyrifos, testosterone, and estradiol

Khawja A. Usmani; Ernest Hodgson; Randy L. Rose

Collaboration


Dive into the Khawja A. Usmani's collaboration.

Top Co-Authors

Avatar

Ernest Hodgson

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Randy L. Rose

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge