Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Khawla S. Al-Kuraya is active.

Publication


Featured researches published by Khawla S. Al-Kuraya.


Cancer Research | 2007

Sanguinarine-Dependent Induction of Apoptosis in Primary Effusion Lymphoma Cells

Azhar R. Hussain; Naif A. Al-Jomah; Abdul K. Siraj; Pulicat S. Manogaran; Khalid Al-Hussein; Jehad Abubaker; Leonidas C. Platanias; Khawla S. Al-Kuraya; Shahab Uddin

Primary effusion lymphoma (PEL) is an incurable, aggressive B-cell malignancy that develops rapid resistance to conventional chemotherapy. In efforts to identify novel approaches to block proliferation of PEL cells, we found that sanguinarine, a natural compound isolated from the root plant Sanguinaria canadendid, inhibits cell proliferation and induces apoptosis in a dose-dependent manner in several PEL cell lines. Our data show that sanguinarine treatment of PEL cells results in up-regulation of death receptor 5 (DR5) expression via generation of reactive oxygen species (ROS) and causes activation of caspase-8 and truncation of Bid (tBid). Subsequently, tBid translocates to the mitochondria causing conformational changes in Bax, leading to loss of mitochondrial membrane potential and release of cytochrome c to the cytosol. Sanguinarine-induced release of cytochrome c results in activation of caspase-9 and caspase-3 and poly(ADP-ribose) polymerase (PARP) cleavage, leading to induction of caspase-dependent apoptosis. In addition, we show that pretreatment of PEL cells with carbobenzoxy-Val-Ala-Asp-fluoromethylketone, a universal inhibitor of caspases, abrogates caspase and PARP activation and prevents cell death induced by sanguinarine. Moreover, treatment of PEL cells with sanguinarine down-regulates expression of inhibitor of apoptosis proteins (IAP). Finally, N-acetylcysteine, an inhibitor of ROS, inhibits sanguinarine-induced generation of ROS, up-regulation of DR5, Bax conformational changes, activation of caspase-3, and down-regulation of IAPs. Taken together, our findings suggest that sanguinarine is a potent inducer of apoptosis of PEL cells via up-regulation of DR5 and raise the possibility that this agent may be of value in the development of novel therapeutic approaches for the treatment of PEL.


Journal of Clinical Pathology | 2006

HER2, TOP2A, CCND1, EGFR and C-MYC oncogene amplification in colorectal cancer

Khawla S. Al-Kuraya; Hedvika Novotny; P Bavi; Abdul K. Siraj; Shahab Uddin; Adnan Ezzat; Nasser Al Sanea; Fouad Al-Dayel; Hadeel Al-Mana; Salwa S. Sheikh; Martina Mirlacher; Coya Tapia; Ronald Simon; Guido Sauter; Luigi Terracciano; Luigi Tornillo

Aim: Recent studies had suggested substantial molecular differences between tumours from different ethnic groups. In this study, the molecular differences between the incidences of colorectal carcinoma in Saudi and Swiss populations are investigated. Method: 518 cases of colon cancer tumours (114 from Saudi Arabia and 404 from Switzerland) were analysed in a tissue microarray format. Fluorescence in situ hybridisation (FISH) was used to estimate frequencies of copy number changes of known oncogenes, including HER2, TOPO2A, CCND1, EGFR and C-MYC. Results: Using FISH, amplifications were mostly low level (gene-to-centromere ratio 2 to 4), which is in contrast with other tumour types with more frequent gene amplifications. The amplifications were particularly frequent for MYC (Saudi 9% and Swiss 14.2%) but unrelated to clinical outcome and pathological information. Remarkably, there were four tumours exhibiting classic high-level gene amplification for HER2 (Swiss 1.3%), a pattern often accompanied by response to trastuzumab (Herceptin) in breast cancer. Occasional high-level amplifications were also observed for CCND1 (Saudi 1/106, 0.9%; Swiss 2/373, 0.5%) and EGFR (Swiss 2/355; 0.6%). Conclusions: Rare high-level amplifications of therapeutic target genes were found in patients with colon cancer. Although no molecular differences were found between incidences of colon cancer cases in Swiss and Saudi populations, these observations emphasise the urgent need for clinical studies investigating the effect of targeted therapies.


American Journal of Pathology | 2011

Genome wide expression analysis of Middle Eastern colorectal cancer reveals FoxM1 as a novel target for cancer therapy

Shahab Uddin; Maqbool Ahmed; Azhar R. Hussain; Jehad Abubaker; Nasser Al-Sanea; Alaa Abduljabbar; Luai H. Ashari; Samar Alhomoud; Fouad Al-Dayel; Zeenath Jehan; Prashant Bavi; Abdul K. Siraj; Khawla S. Al-Kuraya

To identify genes potentially playing an important role in the progression of colorectal carcinoma (CRC), we screened global gene expression using cDNA expression array on 41 CRC tissue samples and 25 noncancerous colorectal tissue samples. Among the up-regulated genes, forkhead box M1 (FOXM1) has been shown to play a critical role in pathogenesis of various malignancies. Using immunohistochemistry on 448 Saudi CRC samples in tissue microarray format, FoxM1 protein overexpression was seen in 66% of CRC tissues and was significantly associated with poorly differentiated and highly proliferative tumors (P = 0.0200 and 0.0018, respectively). FoxM1 expression was also significantly associated with MMP-9 protein expression (P = 0.0002). In vitro data using CRC cell lines showed that inhibition of FoxM1 by thiostrepton resulted in inhibition of proliferation and induction of apoptosis in a dose-dependent manner. Overexpression of FoxM1 potentiated cell proliferation, cell transformation, and migration/invasion of CRC cells via up-regulation of FoxM1 target genes MMP2 and MMP9 and protected these cells from thiostrepton-mediated antiproliferative effects. Finally, in vivo, overexpression of FoxM1 promoted growth of CRC-cell line xenograft tumors in nude mice. Altogether, our data indicate that FoxM1 signaling contributes to aggressiveness in a subset of CRC and that the FOXM1 gene may serve as a useful molecular biomarker and potential therapeutic target.


Molecular Cancer | 2009

Overexpression of leptin receptor predicts an unfavorable outcome in Middle Eastern ovarian cancer

Shahab Uddin; Rong Bu; Maqbool Ahmed; Jehad Abubaker; Fouad Al-Dayel; Prashant Bavi; Khawla S. Al-Kuraya

BackgroundRecent epidemiological studies have suggested that obesity is associated with ovarian cancer. Obesity hormone leptin and its receptor (Ob-R) contribute to tumor development by enhancing cell growth and survival. This study was design to investigate the prevalence of leptin and Ob-R in Middle Eastern epithelial ovarian cancer (EOC) and to analyze the role of leptin and the mechanisms under its action in EOC tissue sample and cell lines.MethodsThe expression of leptin and Ob-R was examined by immunohistochemistry in a tissue microarray of 156 EOC samples. Proliferation of EOC cells in response to leptin was assessed by MTT assays, and its anti-apoptotic effects were determined by flow cytometry. Effect of leptin on PI3K/AKT signaling pathway was further determined by western blotting.ResultsIn clinical samples, Ob-R overexpression was seen in 59.2% EOCs and was significantly associated with poor progression free survival (p = 0.0032). Furthermore, Ob-R expression was associated with anti apoptotic proteins Bcl-XL (p = 0.0035) and XIAP (p = 0.0001). In vitro analysis using EOC cell lines showed that leptin stimulated cell proliferation and inhibits apoptosis via activation of PI3K/AKT signaling pathway. Inhibition of PI3K activity by LY294002, a specific inhibitor of PI3-kinase abrogated leptin mediated PI3K/AKT signaling. Gene silencing of Ob-R with Ob-R siRNA in EOC cells resulted in down regulation of phospho-AKT and its down stream targets.ConclusionOur findings have potential clinical implication for EOC development and progression.


PLOS ONE | 2012

Cross-Talk between NFkB and the PI3-Kinase/AKT Pathway Can Be Targeted in Primary Effusion Lymphoma (PEL) Cell Lines for Efficient Apoptosis

Azhar R. Hussain; Saeeda O. Ahmed; Maqbool Ahmed; Omar S. Khan; Sally Al AbdulMohsen; Leonidas C. Platanias; Khawla S. Al-Kuraya; Shahab Uddin

Background A number of constitutively activated signaling pathways play critical roles in the survival and growth of primary effusion lymphoma cells (PELs) including NFkB and PI3/AKT kinase cascades. NFkBis constitutively activated in a number of malignancies, including multiple myeloma, Burkitt’s lymphoma and diffuse large cell B-cell lymphoma. However, its role in primary effusion lymphoma has not been fully explored. Methodology/Principal Findings We used pharmacological inhibition and gene silencing to define the role of NFkB in growth and survival of PEL cells. Inhibition of NFkB activity by Bay11-7085 resulted in decreased expression of p65 in the nuclear compartment as detected by EMSA assays. In addition, Bay11-7085 treatment caused de-phosphorylation of AKT and its downstream targets suggesting a cross-talk between NFkB and the PI3-kinase/AKT pathway. Importantly, treatment of PEL cells with Bay11-7085 led to inhibition of cell viability and induced apoptosis in a dose dependent manner. Similar apoptotic effects were found when p65 was knocked down using specific small interference RNA. Finally, co-treatment of PEL cells with suboptimal doses of Bay11-7085 and LY294002 led to synergistic apoptotic responses in PEL cells. Conclusion/Significance These data support a strong biological-link between NFkB and the PI3-kinase/AKT pathway in the modulation of anti-apoptotic effects in PEL cells. Synergistic targeting of these pathways using NFKB- and PI3-kinase/AKT- inhibitors may have a therapeutic potential for the treatment of PEL and possibly other malignancies with constitutive activation of these pathways.


International Journal of Cancer | 2010

Cyclooxygenase‐2 inhibition inhibits PI3K/AKT kinase activity in epithelial ovarian cancer

Shahab Uddin; Maqbool Ahmed; Azhar R. Hussain; Lina Assad; Fouad Al-Dayel; Prashant Bavi; Khawla S. Al-Kuraya; Adnan Munkarah

Cyclooxygenase‐2 (COX‐2) expression contributes to tumor growth and invasion in epithelial ovarian cancer (EOC). COX‐2 inhibitors exhibit important anticarcinogenic potential against EOC, but the molecular mechanisms underlying this effect and relation with PI3‐kinase/AKT signaling remain the subject of intense investigations. Therefore, the role of COX‐2 in EOC and its cross talk with PI3‐kinase/AKT pathway were investigated using a large series of EOC tissues in a tissue micro array (TMA) format followed by in vitro and in vivo studies using EOC cell lines and NUDE mice. Clinically, COX‐2 was overexpressed in 60.3% of EOC and was significantly associated with activated AKT (p < 0.0001). Cox‐1 expression was seen in 59.9% but did not associate with AKT. Our in vitro data using EOC cell line showed that inhibition of COX‐2 by aspirin, selective inhibitor NS398 and gene silencing by COX‐2 specific siRNA impaired phosphorylation of AKT resulting decreased downstream signaling leading to cell growth inhibition and induction of apoptosis. Finally, treatment of MDAH2774 cell line xenografts with aspirin resulted in growth inhibition of tumors in NUDE mice via down‐regulation of COX‐2 and AKT activity. These data identify COX‐2 as a potential biomarker and therapeutic target in distinct molecular subtypes of ovarian cancer.


The Journal of Clinical Endocrinology and Metabolism | 2016

Differential Clinicopathological Risk and Prognosis of Major Papillary Thyroid Cancer Variants

Xiaoguang Shi; Rengyun Liu; Fulvio Basolo; Riccardo Giannini; Xiaopei Shen; Di Teng; Haixia Guan; Zhongyan Shan; Weiping Teng; Thomas J. Musholt; Khawla S. Al-Kuraya; Laura Fugazzola; Carla Colombo; Electron Kebebew; Barbara Jarzab; Agnieszka Czarniecka; Bela Bendlova; Vlasta Sykorova; Manuel Sobrinho-Simões; Paula Soares; Young Kee Shong; Tae Yong Kim; Sonia Cheng; Sylvia L. Asa; David Viola; Rossella Elisei; Linwah Yip; Caterina Mian; Federica Vianello; Yangang Wang

CONTEXT Individualized management, incorporating papillary thyroid cancer (PTC) variant-specific risk, is conceivably a useful treatment strategy for PTC, which awaits comprehensive data demonstrating differential risks of PTC variants to support. OBJECTIVE This study sought to establish the differential clinicopathological risk of major PTC variants: conventional PTC (CPTC), follicular-variant PTC (FVPTC), and tall-cell PTC (TCPTC). METHODS This was a retrospective study of clinicopathological outcomes of 6282 PTC patients (4799 females and 1483 males) from 26 centers and The Cancer Genome Atlas in 14 countries with a median age of 44 years (interquartile range, 33-56 y) and median follow-up time of 37 months (interquartile range, 15-82 mo). RESULTS The cohort consisted of 4702 (74.8%) patients with CPTC, 1126 (17.9%) with FVPTC, and 239 (3.8%) with TCPTC. The prevalence of high-risk parameters was significantly different among the three variants, including extrathyroidal invasion, lymph node metastasis, stages III/IV, disease recurrence, mortality, and the use (need) of radioiodine treatment (all P < .001), being highest in TCPTC, lowest in FVPTC, and intermediate in CPTC, following an order of TCPTC > CPTC ≫ FVPTC. Recurrence and mortality in TCPTC, CPTC, and FVPTC were 27.3 and 6.7%, 16.1 and 2.5%, and 9.1 and 0.6%, corresponding to events per 1000 person-years (95% confidence interval [CI]) of 92.47 (64.66-132.26) and 24.61 (12.31-49.21), 34.46 (30.71-38.66), and 5.87 (4.37-7.88), and 24.73 (18.34-33.35) and 1.68 (0.54-5.21), respectively. Mortality hazard ratios of CPTC and TCPTC over FVPTC were 3.44 (95% CI, 1.07-11.11) and 14.96 (95% CI, 3.93-56.89), respectively. Kaplan-Meier survival analyses showed the best prognosis in FVPTC, worst in TCPTC, and intermediate in CPTC in disease recurrence-free probability and disease-specific patient survival. This was particularly the case in patients at least 45 years old. CONCLUSION This large multicenter study demonstrates differential prognostic risks of the three major PTC variants and establishes a unique risk order of TCPTC > CPTC ≫ FVPTC, providing important clinical implications for specific variant-based management of PTC.


Cancer Research | 2008

Bortezomib (Velcade) Induces p27Kip1 Expression through S-Phase Kinase Protein 2 Degradation in Colorectal Cancer

Shahab Uddin; Maqbool Ahmed; Prashant Bavi; Raafat El-Sayed; Nasser Al-Sanea; Alaa Abduljabbar; Luai H. Ashari; Samar Alhomoud; Fouad Al-Dayel; Azhar R. Hussain; Khawla S. Al-Kuraya

S-phase kinase protein 2 (SKP2), an F-box protein, targets cell cycle regulators including cycle-dependent kinase inhibitor p27Kip1 via ubiquitin-mediated degradation. SKP2 is frequently overexpressed in a variety of cancers. We investigated the role of SKP2 and its ubiquitin-proteasome pathway in colorectal carcinoma using a panel of cell lines, clinical samples, and the NUDE mouse model. Using immunohistochemical analysis on a large tissue microarray of 448 samples, an inverse association of SKP2 expression with p27Kip1 protein levels was seen. A colorectal cancer (CRC) subset with high level of SKP2 and low level of p27Kip1 showed a decreased overall survival (P = 0.0057). Treatment of CRC cell lines with bortezomib or expression of small interfering RNA of SKP2 causes down-regulation of SKP2 and accumulation of p27Kip1. Furthermore, treatment of CRC cells with bortezomib causes apoptosis by involving the mitochondrial pathway and activation of caspases. In addition, treatment of CRC cells with bortezomib down-regulated the expression of XIAP, cIAP1, and survivin. Finally, treatment of CRC cell line xenografts with bortezomib resulted in growth inhibition of tumors in NUDE mice via down-regulation of SKP2 and accumulation of p27Kip1. Altogether, our results suggest that SKP2 and the ubiquitin-proteasome pathway may be potential targets for therapeutic intervention for treatment of CRC.


The Journal of Clinical Endocrinology and Metabolism | 2008

Fatty Acid Synthase and AKT Pathway Signaling in a Subset of Papillary Thyroid Cancers

Shahab Uddin; Abdul K. Siraj; Maha Al-Rasheed; Maqbool Ahmed; Rong Bu; Jeffrey N. Myers; Abdulrahman Al-Nuaim; Saif Al-Sobhi; Fouad Al-Dayel; P Bavi; Azhar R. Hussain; Khawla S. Al-Kuraya

CONTEXT Fatty acid synthase (FASN) is an enzyme that plays a critical role in de novo synthesis of fatty acids. FASN is overexpressed in variety of human cancers, but its role has not been elucidated in papillary thyroid carcinoma (PTC). OBJECTIVE Our objective was to investigate the role of FASN and its relationship with phosphatidylinositol 3-kinase/AKT activation in a large series of PTC in a tissue microarray format followed by studies using PTC cell lines and Nude mice. DESIGN Analysis of apoptosis and cell cycle were evaluated by flow cytometry and DNA fragmentation assays. FASN and phospho-AKT protein expression was determined by immunohistochemistry and Western blotting. RESULTS Our data show that expression of FASN is associated with activated AKT (phospho-AKT) in a subset of PTC. Treatment of PTC cell lines (NPA-187, ONCO-DG-1, and B-CPAP) with C-75, an inhibitor of FASN, suppresses growth and induces apoptosis in all cell lines. Treatment of PTC cells with C-75 or expression of FASN small interfering RNA causes down-regulation of FASN and inactivation of AKT activity. Furthermore, treatment of PTC cell lines with C-75 results in apoptosis via the mitochondrial pathway involving the proapoptotic factor Bad, activation of Bax, activation of caspases, and down-regulation of antiapoptotic proteins. Finally, treatment of NPA-187 xenografts with C-75 results in growth inhibition of tumors in Nude mice via down-regulation of FASN expression and inactivation of AKT. CONCLUSIONS Our results suggest that FASN and activated AKT pathway may be a potential target for therapeutic intervention for the treatment of PTC.


PLOS ONE | 2011

Resveratrol Suppresses Constitutive Activation of AKT via Generation of ROS and Induces Apoptosis in Diffuse Large B Cell Lymphoma Cell Lines

Azhar R. Hussain; Shahab Uddin; Rong Bu; Omar S. Khan; Saeeda O. Ahmed; Maqbool Ahmed; Khawla S. Al-Kuraya

Background We have recently shown that deregulation PI3-kinase/AKT survival pathway plays an important role in pathogenesis of diffuse large B cell lymphoma (DLBCL). In an attempt to identify newer therapeutic agents, we investigated the role of Resveratrol (trans-3,4′, 5-trihydroxystilbene), a naturally occurring polyphenolic compound on a panel of diffuse large B-cell lymphoma (DLBCL) cells in causing inhibition of cell viability and inducing apoptosis. Methodology/Principal Findings We investigated the action of Resveratrol on DLBCL cells and found that Resveratrol inhibited cell viability and induced apoptosis by inhibition of constitutively activated AKT and its downstream targets via generation of reactive oxygen species (ROS). Simultaneously, Resveratrol treatment of DLBCL cell lines also caused ROS dependent upregulation of DR5; and interestingly, co-treatment of DLBCL with sub-toxic doses of TRAIL and Resveratrol synergistically induced apoptosis via utilizing DR5, on the other hand, gene silencing of DR5 abolished this effect. Conclusion/Significance Altogether, these data suggest that Resveratrol acts as a suppressor of AKT/PKB pathway leading to apoptosis via generation of ROS and at the same time primes DLBCL cells via up-regulation of DR5 to TRAIL-mediated apoptosis. These data raise the possibility that Resveratrol may have a future therapeutic role in DLBCL and possibly other malignancies with constitutive activation of the AKT/PKB pathway.

Collaboration


Dive into the Khawla S. Al-Kuraya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prashant Bavi

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge