Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Khoi Dao is active.

Publication


Featured researches published by Khoi Dao.


BioMed Research International | 2014

Neurotoxicants Are in the Air: Convergence of Human, Animal, and In Vitro Studies on the Effects of Air Pollution on the Brain

Lucio G. Costa; Toby B. Cole; Jacki Coburn; Yu Chi Chang; Khoi Dao; Pamela J. Roqué

In addition to increased morbidity and mortality caused by respiratory and cardiovascular diseases, air pollution may also negatively affect the brain and contribute to central nervous system diseases. Air pollution is a mixture comprised of several components, of which ultrafine particulate matter (UFPM; <100 nm) is of much concern, as these particles can enter the circulation and distribute to most organs, including the brain. A major constituent of ambient UFPM is represented by traffic-related air pollution, mostly ascribed to diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution may lead to neurotoxicity. In addition to a variety of behavioral abnormalities, two prominent effects caused by air pollution are oxidative stress and neuroinflammation, which are seen in both humans and animals and are confirmed by in vitro studies. Among factors which can affect neurotoxic outcomes, age is considered the most relevant. Human and animal studies suggest that air pollution (and DE) may cause developmental neurotoxicity and may contribute to the etiology of neurodevelopmental disorders, including autistic spectrum disorders. In addition, air pollution exposure has been associated with increased expression of markers of neurodegenerative disease pathologies.


Neurotoxicology | 2017

Neurotoxicity of traffic-related air pollution.

Lucio G. Costa; Toby B. Cole; Jacki Coburn; Yu Chi Chang; Khoi Dao; Pamela J. Roqué

&NA; The central nervous system is emerging as an important target for adverse health effects of air pollution, where it may contribute to neurodevelopmental and neurodegenerative disorders. Air pollution comprises several components, including particulate matter (PM) and ultrafine particulate matter (UFPM), gases, organic compounds, and metals. An important source of ambient PM and UFPM is represented by traffic‐related air pollution, primarily diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution, and to traffic‐related air pollution or DE in particular, may lead to neurotoxicity. In particular, air pollution is emerging as a possible etiological factor in neurodevelopmental (e.g. autism spectrum disorders) and neurodegenerative (e.g. Alzheimers disease) disorders. The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro‐inflammation. Studies in mice acutely exposed to DE (250–300 &mgr;g/m3 for 6 h) have shown microglia activation, increased lipid peroxidation, and neuro‐inflammation in various brain regions, particularly the hippocampus and the olfactory bulb. An impairment of adult neurogenesis was also found. In most cases, the effects of DE were more pronounced in male mice, possibly because of lower antioxidant abilities due to lower expression of paraoxonase 2. HighlightsTraffic‐related air pollution may cause neurotoxicity.Traffic‐related air pollution may contribute to neurodevelopmental and neurodegenerative disorders.Particulate matter (PM) from diesel exhaust can cause oxidative stress and neuroinflammation.


Neurochemical Research | 2013

Modulation of Paraoxonase 2 (PON2) in Mouse Brain by the Polyphenol Quercetin: A Mechanism of Neuroprotection?

Lucio G. Costa; Leah Tait; Rian de Laat; Khoi Dao; Gennaro Giordano; Claudia Pellacani; Toby B. Cole; Clement E. Furlong

AbstractQuercetin is a common flavonoid polyphenol which has been shown to exert neuroprotective actions in vitro and in vivo. Though quercetin has antioxidant properties, it has been suggested that neuroprotection may be ascribed to its ability of inducing the cell’s own defense mechanisms. The present study investigated whether quercetin could increase the levels of paraoxonase 2 (PON2), a mitochondrial enzyme expressed in brain cells, which has been shown to have potent antioxidant properties. PON2 protein, mRNA, and lactonase activity were highest in mouse striatal astrocytes. Quercetin increased PON2 levels, possibly by activating the JNK/AP-1 pathway. The increased PON2 levels induced by quercetin resulted in decreased oxidative stress and ensuing toxicity induced by two oxidants. The neuroprotective effect of quercetin was significantly diminished in cells from PON2 knockout mice. These findings suggest that induction of PON2 by quercetin represents an important mechanism by which this polyphenol may exert its neuroprotective action.


Neurotoxicology | 2014

Paraoxonase-2 (PON2) in brain and its potential role in neuroprotection

Lucio G. Costa; Rian de Laat; Khoi Dao; Claudia Pellacani; Toby B. Cole; Clement E. Furlong

Paraoxonase 2 (PON2) is a member of a gene family which also includes the more studied PON1, as well as PON3. PON2 is unique among the three PONs, as it is expressed in brain tissue. PON2 is a lactonase and displays anti-oxidant and anti-inflammatory properties. PON2 levels are highest in dopaminergic regions (e.g. striatum), are higher in astrocytes than in neurons, and are higher in brain and peripheral tissues of female mice than male mice. At the sub-cellular level, PON2 localizes primarily in mitochondria, where it scavenges superoxides. Lack of PON2 (as in PON2(-/-) mice), or lower levels of PON2 (as in male mice compared to females) increases susceptibility to oxidative stress-induced toxicity. Estradiol increases PON2 expression in vitro and in vivo, and provides neuroprotection against oxidative stress. Such neuroprotection is not present in CNS cells from PON2(-/-) mice. Similar results are also found with the polyphenol quercetin. PON2, given its cellular localization and antioxidant and anti-inflammatory actions, may represent a relevant enzyme involved in neuroprotection, and may represent a novel target for neuroprotective strategies. Its differential expression in males and females may explain gender differences in the incidence of various diseases, including neurodevelopmental, neurological, and neurodegenerative diseases.


Journal of Biological Chemistry | 2007

Ethanol induces cholesterol efflux and up-regulates ATP-binding cassette cholesterol transporters in fetal astrocytes

Marina Guizzetti; Jing Chen; John F. Oram; Ryozo Tsuji; Khoi Dao; Thomas Möller; Lucio G. Costa

Cholesterol plays an important role during brain development, since it is involved in glial cell proliferation, neuronal survival and differentiation, and synaptogenesis. Astrocytes produce large amounts of brain cholesterol and produce and release lipoproteins containing apoE that can extract cholesterol from CNS cells for elimination. We hypothesized that some of the deleterious effects of ethanol in the developing brain may be due to the disruption of cholesterol homeostasis in astrocytes. This study investigates the effect of ethanol on cholesterol efflux mediated by ATP-binding cassette (ABC) cholesterol transporters. In fetal rat astrocytes in culture, ethanol caused a concentration-dependent increase in cholesterol efflux and increased the levels of ABCA1 starting at 25 mm. Similar effects of ethanol on cholesterol efflux and ABCA1 were also observed in fetal human astrocytes. In addition, ABCA1 levels were increased in the brains of 7-day-old pups treated for 3 days with 2, 4, or 6 g/kg ethanol. Ethanol also increased apoE release from fetal rat astrocytes, and conditioned medium prepared from ethanol-treated astrocytes extracted more cholesterol than conditioned medium from untreated cells. In addition, ethanol increased the levels of another cholesterol transporter, ABCG1. Ethanol did not affect cholesterol synthesis and reduced the levels of intracellular cholesterol in rat astrocytes. Retinoic acid, which induces teratogenic effects similarly to ethanol, also caused up-regulation of ABCA1 and ABCG1.


Toxicology | 2016

Sex and genetic differences in the effects of acute diesel exhaust exposure on inflammation and oxidative stress in mouse brain

Toby B. Cole; Jacki Coburn; Khoi Dao; Pam Roqué; Yu-Chi Chang; Vrinda Kalia; Tomás R. Guilarte; Jennifer L. Dziedzic; Lucio G. Costa

In addition to increased morbidity and mortality caused by respiratory and cardiovascular diseases, air pollution may also contribute to central nervous system (CNS) diseases. Traffic-related air pollution is a major contributor to global air pollution, and diesel exhaust (DE) is its most important component. DE contains more than 40 toxic air pollutants and is a major constituent of ambient particulate matter (PM), particularly of ultrafine-PM. Limited information suggests that exposure to DE may cause oxidative stress and neuroinflammation in the CNS. We hypothesized that males may be more susceptible than females to DE neurotoxicity, because of a lower level of expression of paraoxonase 2 (PON2), an intracellular anti-oxidant and anti-inflammatory enzyme. Acute exposure of C57BL/6 mice to DE (250-300μg/m3 for 6h) caused significant increases in lipid peroxidation and of pro-inflammatory cytokines (IL-1α, IL-1β, IL-3, IL-6, TNF-α) in various brain regions (particularly olfactory bulb and hippocampus). In a number of cases the observed effects were more pronounced in male than in female mice. DE exposure also caused microglia activation, as measured by increased Iba1 (ionized calcium-binding adapter molecule 1) expression, and of TSPO (translocator protein) binding. Mice heterozygotes for the modifier subunit of glutamate cysteine ligase (the limiting enzyme in glutathione biosynthesis; Gclm+/- mice) appeared to be significantly more susceptible to DE-induced neuroinflammation than wild type mice. These findings indicate that acute exposure to DE causes neuroinflammation and oxidative stress in brain, and suggest that sex and genetic background may play important roles in modulating susceptibility to DE neurotoxicity.


Toxicology | 2014

Astrocytes protect against diazinon- and diazoxon-induced inhibition of neurite outgrowth by regulating neuronal glutathione

Daniella Pizzurro; Khoi Dao; Lucio G. Costa

Evidence demonstrating that human exposure to various organophosphorus insecticides (OPs) is associated with neurobehavioral deficits in children continues to emerge. The present study focused on diazinon (DZ) and its active oxygen metabolite, diazoxon (DZO), and explored their ability to impair neurite outgrowth in rat primary hippocampal neurons as a mechanism of developmental neurotoxicity. Both DZ and DZO (0.5-10 μM) significantly inhibited neurite outgrowth in hippocampal neurons, at concentrations devoid of any cyototoxicity. These effects appeared to be mediated by oxidative stress, as they were prevented by antioxidants (melatonin, N-t-butyl-alpha-phenylnitrone, and glutathione ethyl ester). Inhibition of neurite outgrowth was observed at concentrations below those required to inhibit the catalytic activity of acetylcholinesterase. The presence of astrocytes in the culture was able to provide protection against inhibition of neurite outgrowth by DZ and DZO. Astrocytes increased neuronal glutathione (GSH) in neurons, to levels comparable to those of GSH ethyl ester. Astrocytes depleted of GSH by L-buthionine-(S,R)-sulfoximine no longer conferred protection against DZ- and DZO-induced inhibition of neurite outgrowth. The findings indicate that DZ and DZO inhibit neurite outgrowth in hippocampal neurons by mechanisms involving oxidative stress, and that these effects can be modulated by astrocytes and astrocyte-derived GSH. Oxidative stress from other chemical exposures, as well as genetic abnormalities that result in deficiencies in GSH synthesis and regulation, may render individuals more susceptible to these developmental neurotoxic effects of OPs.


Neurotoxicology | 2016

Microglia mediate diesel exhaust particle-induced cerebellar neuronal toxicity through neuroinflammatory mechanisms

Pamela J. Roqué; Khoi Dao; Lucio G. Costa

In addition to the well-established effects of air pollution on the cardiovascular and respiratory systems, emerging evidence has implicated it in inducing negative effects on the central nervous system. Diesel exhaust particulate matter (DEP), a major component of air pollution, is a complex mixture of numerous toxicants. Limited studies have shown that DEP-induced dopaminergic neuron dysfunction is mediated by microglia, the resident immune cells of the brain. Here we show that mouse microglia similarly mediate primary cerebellar granule neuron (CGN) death in vitro. While DEP (0, 25, 50, 100μg/2cm2) had no effect on CGN viability after 24h of treatment, in the presence of primary cortical microglia neuronal cell death increased by 2-3-fold after co-treatment with DEP, suggesting that microglia are important contributors to DEP-induced CGN neurotoxicity. DEP (50μg/2cm2) treatment of primary microglia for 24h resulted in morphological changes indicative of microglia activation, suggesting that DEP may induce the release of cytotoxic factors. Microglia-conditioned medium after 24h treatment with DEP, was also toxic to CGNs. DEP caused a significant increase in reactive oxygen species in microglia, however, antioxidants failed to protect neurons from DEP/microglia-induced toxicity. DEP increased mRNA levels of the pro-inflammatory cytokines IL-6 and IL1-β, and the release of IL-6. The antibiotic minocycline (50μM) and the peroxisome proliferator-activated receptor-γ agonist pioglitazone (50μM) attenuated DEP-induced CGN death in the co-culture system. Microglia and CGNs from male mice appeared to be somewhat more susceptible to DEP neurotoxicity than cells from female mice possibly because of lower paraoxonase-2 expression. Together, these results suggest that microglia-induced neuroinflammation may play a critical role in modulating the effect of DEP on neuronal viability. .


Biochemical Pharmacology | 2011

Ethanol impairs muscarinic receptor-induced neuritogenesis in rat hippocampal slices: Role of astrocytes and extracellular matrix proteins

Gennaro Giordano; Marina Guizzetti; Khoi Dao; Hayley A. Mattison; Lucio G. Costa

In an in vitro co-culture system of astrocytes and neurons, stimulation of cholinergic muscarinic receptors in astrocytes had been shown to cause neuritogenesis in hippocampal neurons, and this effect was inhibited by ethanol. The present study sought to confirm these earlier findings in a more complex system, in vitro rat hippocampal slices in culture. Exposure of hippocampal slices to the cholinergic agonist carbachol (1mM for 24h) induced neurite outgrowth in hippocampal pyramidal neurons, which was mediated by activation of muscarinic M3 receptors. Specifically, carbachol induced a >4-fold increase in the length of the longest neurite, and a 4-fold increase in the length of minor neurites and in the number of branches. Co-incubation of carbachol with ethanol (50mM) resulted in significant inhibition of the effects induced by carbachol on all parameters measured. Neurite outgrowth in CNS neurons is dependent on various permissive factors that are produced and released by glial cells. In hippocampal slices carbachol increased the levels of two extracellular matrix protein, fibronectin and laminin-1, by 1.6-fold, as measured by Western blot. Co-incubation of carbachol with ethanol significantly inhibited these increases. Carbachol-induced increases in levels of extracellular matrix proteins were antagonized by a M3 muscarinic receptor antagonist. Furthermore, function-blocking fibronectin or laminin-1 antibodies antagonized the effect of carbachol on neurite outgrowth. These results indicate that in hippocampal slices stimulation of muscarinic M3 receptors induces neurite outgrowth, which is mediated by fibronectin and laminin-1, two extracellular matrix proteins released by astrocytes. By decreasing fibronectin and laminin levels ethanol prevents carbachol-induced neuritogenesis. These findings highlight the importance of glial-neuronal interactions as important targets in the developmental neurotoxicity of alcohol.


Toxicology and Applied Pharmacology | 2014

Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

Daniella Pizzurro; Khoi Dao; Lucio G. Costa

Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial-neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons.

Collaboration


Dive into the Khoi Dao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toby B. Cole

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Jacki Coburn

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rian de Laat

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge