Khoon S. Lim
University of New South Wales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Khoon S. Lim.
Acta Biomaterialia | 2014
G.L. Mario Cheong; Khoon S. Lim; Anais Jakubowicz; Penny J. Martens; Rylie A. Green
The development of high-resolution neuroprosthetics has driven the need for better electrode materials. Approaches to achieve both electrical and mechanical improvements have included the development of hydrogel and conducting polymer composites. However, these composites have limited biological interaction, as they are often composed of synthetic polymers or non-ideal biological polymers, which lack the required elements for biorecognition. This study explores the covalent incorporation of bioactive molecules within a conducting hydrogel (CH). The CH was formed from the biosynthetic co-hydrogel poly(vinyl alcohol)-heparin and the conductive polymer (CP), poly(3,4-ethylene dioxythiophene). Adhesive biomolecules sericin and gelatin were covalently incorporated via methacrylate crosslinking within the CH. Electrical properties of the bioactive CH were assessed, and it was shown that the polar biomolecules improved charge transfer. The bioactivity of heparin within the hybrid assessed by examining stimulation of B-lymphocyte (BaF3) proliferation showed that bioactivity was retained after electropolymerization of the CP through the hydrogel. Similarly, incorporation of sericin and gelatin in the CH promoted neural cell adhesion and proliferation, with only small percentages (⩽ 2 wt.%) required to achieve optimal results. Sericin provided the best support for the outgrowth of neural processes, and 1 wt.% was sufficient to facilitate adhesion and differentiation of neurons. The drug delivery capability of CH was shown through incorporation of nerve growth factor during polymer fabrication. NGF was delivered to the target cells, resulting in outgrowth of neural processes. The CH system is a flexible technology platform, which can be tailored to covalently incorporate bioactive protein sequences and deliver mobile water-soluble drug molecules.
Macromolecular Rapid Communications | 2014
Matthew B. Peterson; Solomon Pradhan Le-Masurier; Khoon S. Lim; James M. Hook; Penny J. Martens; Anthony M. Granville
Investigation into the mussel-inspired polymerization of dopamine has led to the realization that other compounds possessing potential quinone structures could undergo similar self-polymerizations in mild buffered aqueous conditions. To this end, 5-hydroxyindazole was added to a dopamine polymerization matrix in varying amounts, to study its incorporation into a polydopamine coating of silica particles. Solid-state (13) C NMR spectroscopy confirmed the presence of the indazole in the polymer shell when coated onto silica gel. SEM and DLS analysis also confirmed that the presence of the indazole in the reaction matrix yielded monodisperse polymer-coated particles, which retained their polymer shell upon HF etching, except when high levels of the indazole were used. Characterization data and examination of incorporation mechanism suggests that the 5-hydroxyindazole performs the function of a chain-terminating agent. Cytotoxicity studies of the polymer particles containing 5-hydroxyindazole showed dramatically lower toxicity levels compared to polydopamine alone.
Advanced Materials | 2017
Sarah Bertlein; Gabriella C. J. Brown; Khoon S. Lim; Tomasz Jungst; Thomas Boeck; Torsten Blunk; Joerg Tessmar; Gary J. Hooper; Tim B. F. Woodfield; Juergen Groll
Bioprinting can be defined as the art of combining materials and cells to fabricate designed, hierarchical 3D hybrid constructs. Suitable materials, so called bioinks, have to comply with challenging rheological processing demands and rapidly form a stable hydrogel postprinting in a cytocompatible manner. Gelatin is often adopted for this purpose, usually modified with (meth-)acryloyl functionalities for postfabrication curing by free radical photopolymerization, resulting in a hydrogel that is cross-linked via nondegradable polymer chains of uncontrolled length. The application of allylated gelatin (GelAGE) as a thiol-ene clickable bioink for distinct biofabrication applications is reported. Curing of this system occurs via dimerization and yields a network with flexible properties that offer a wider biofabrication window than (meth-)acryloyl chemistry, and without additional nondegradable components. An in-depth analysis of GelAGE synthesis is conducted, and standard UV-initiation is further compared with a recently described visible-light-initiator system for GelAGE hydrogel formation. It is demonstrated that GelAGE may serve as a platform bioink for several biofabrication technologies by fabricating constructs with high shape fidelity via lithography-based (digital light processing) 3D printing and extrusion-based 3D bioprinting, the latter supporting long-term viability postprinting of encapsulated chondrocytes.
international conference of the ieee engineering in medicine and biology society | 2013
Rylie A. Green; Khoon S. Lim; William C. Henderson; Rachelle T. Hassarati; Penny J. Martens; Nigel H. Lovell
Soft, cell integrated electrode coatings are proposed to address the problem of scar tissue encapsulation of stimulating neuroprosthetics. The aim of these studies was to prove the concept and feasibility of integrating a cell loaded hydrogel with existing electrode coating technologies. Layered conductive hydrogel constructs are embedded with neural cells and shown to both support cell growth and maintain electro activity. The safe charge injection limit of these electrodes was 8 times higher than conventional platinum (Pt) electrodes and the stiffness was four orders of magnitude lower than Pt. Future studies will determine the biological cues required to support stem cell differentiation from the electrode surface.
Macromolecular Bioscience | 2015
Khoon S. Lim; Yogambha Ramaswamy; Justine J. Roberts; Marie‐Helene Alves; Penny J. Martens
A photopolymerizable-tyraminated poly(vinyl alcohol) (PVA-Tyr) system that has the ability to covalently bind proteins in their native state was evaluated as a platform for cell encapsulation. However, a key hurdle to this system is the radicals generated during the cross-linking that can cause oxidative stress to the cells. This research hypothesized that incorporation of anti-oxidative proteins (sericin and gelatin) into PVA-Tyr gels would mitigate any toxicity caused by the radicals. The results showed that although incorporation of 1 wt% sericin promoted survival of the fibroblasts, both sericin and gelatin acted synergistically to facilitate long-term 3D cell function. The encapsulated cells formed clusters with deposition of laminin and collagen, as well as remaining metabolically active after 21 d.
Biomaterials Research | 2016
Justine J. Roberts; Pratibha Naudiyal; Khoon S. Lim; Penny J. Martens
BackgroundDityrosine crosslinking in proteins is a bioinspired method of forming hydrogels. This study compares oxidative enzyme initiators for their relative crosslinking efficiency and cytocompatibility using the same phenol group and the same material platform. Four common enzyme and enzyme-like oxidative initiators were probed for resulting material properties and cell viability post-encapsulation.ResultsAll four initiators can be used to form phenol-crosslinked hydrogels, however gelation rates are dependent on enzyme type, concentration, and the oxidant. Horseradish peroxidase (HRP) or hematin with hydrogen peroxide led to a more rapid poly (vinyl alcohol)-tyramine (PVA-Tyr) polymerization (10–60 min) because a high oxidant concentration was dissolved within the macromer solution at the onset of crosslinking, whereas laccase and tyrosinase require oxygen diffusion to crosslink phenol residues and therefore took longer to gel (2.5+ hours). The use of hydrogen peroxide as an oxidant reduced cell viability immediately post-encapsulation. Laccase- and tyrosinase-mediated encapsulation of cells resulted in higher cell viability immediately post-encapsulation and significantly higher cell proliferation after one week of culture.ConclusionsOverall this study demonstrates that HRP/H2O2, hematin/H2O2, laccase, and tyrosinase can create injectable, in situ phenol-crosslinked hydrogels, however oxidant type and concentration are critical parameters to assess when phenol crosslinking hydrogels for cell-based applications.
Macromolecular Bioscience | 2017
Gabriella C. J. Brown; Khoon S. Lim; Brooke L. Farrugia; Gary J. Hooper; Tim B. F. Woodfield
Multicomponent gelatin-methacryloyl (GelMA) hydrogels are regularly adopted for cartilage tissue engineering (TE) applications, where optimizing chemical modifications for preserving biofunctionality is often overlooked. This study investigates the biological effect of two different modification methods, methacrylation and thiolation, to copolymerize GelMA and heparin. The native bioactivity of methacrylated heparin (HepMA) and thiolated heparin (HepSH) is evaluated via thromboplastin time and heparan sulfate-deficient myeloid cell-line proliferation assay, demonstrating that thiolation is superior for preserving anticoagulation and growth factor signaling capacity. Furthermore, incorporating either HepMA or HepSH in chondrocyte-laden GelMA hydrogels, cultured for 5 weeks under chondrogenic conditions, promotes cell viability and chondrocyte phenotype. However, only GelMA-HepSH hydrogels yield significantly greater differentiation and matrix deposition in vitro compared to GelMA. This study demonstrates that thiol-ene chemistry offers a favorable strategy for incorporating bioactives into gelatin hydrogels as compared to methacrylation while furthermore highlighting GelMA-HepSH hydrogels as candidates for cartilage TE applications.
international conference of the ieee engineering in medicine and biology society | 2015
Ulises A. Aregueta-Robles; Khoon S. Lim; Penny J. Martens; Nigel H. Lovell; Rylie A. Green
Hydrogels hold significant promise for supporting cell based therapies in the field of bioelectrodes. It has been proposed that tissue engineering principles can be used to improve the integration of neural interfacing electrodes. Degradable hydrogels based on poly (vinyl alcohol) functionalised with tyramine (PVA-Tyr) have been shown to support covalent incorporation of non-modified tyrosine rich proteins within synthetic hydrogels. PVA-Tyr crosslinked with such proteins, were explored as a scaffold for supporting development of neural tissue in a three dimensional (3D) environment. In this study a model neural cell line (PC12) and glial accessory cell line, Schwann cell (SC) were encapsulated in PVA-Tyr crosslinked with gelatin and sericin. Specifically, this study aimed to examine the growth and function of SC and PC12 co-cultures when translated from a two dimensional (2D) environment to a 3D environment. PC12 differentiation was successfully promoted in both 2D and 3D at 25 days post-culture. SC encapsulated as a single cell line and in co-culture were able to produce both laminin and collagen-IV which are required to support neuronal development. Neurite outgrowth in the 3D environment was confirmed by immunocytochemical staining. PVA-Tyr/sericin/gelatin hydrogel showed mechanical properties similar to nerve tissue elastic modulus. It is suggested that the mechanical properties of the PVA-Tyr hydrogels with native protein components are providing with a compliant substrate that can be used to support the survival and differentiation of neural networks.
Biofabrication | 2018
Khoon S. Lim; Riccardo Levato; Pedro Ferreira da Costa; Miguel Castilho; Cesar R Alcala-Orozco; Kim M.A. van Dorenmalen; Ferry P.W. Melchels; Debby Gawlitta; Gary J. Hooper; Jos Malda; Tim B. F. Woodfield
Lithography-based three-dimensional (3D) printing technologies allow high spatial resolution that exceeds that of typical extrusion-based bioprinting approaches, allowing to better mimic the complex architecture of biological tissues. Additionally, lithographic printing via digital light processing (DLP) enables fabrication of free-form lattice and patterned structures which cannot be easily produced with other 3D printing approaches. While significant progress has been dedicated to the development of cell-laden bioinks for extrusion-based bioprinting, less attention has been directed towards the development of cyto-compatible bio-resins and their application in lithography-based biofabrication, limiting the advancement of this promising technology. In this study, we developed a new bio-resin based on methacrylated poly(vinyl alcohol) (PVA-MA), gelatin-methacryloyl (Gel-MA) and a transition metal-based visible light photoinitiator. The utilization of a visible light photo-initiating system displaying high molar absorptivity allowed the bioprinting of constructs with high resolution features, in the range of 25-50 μm. Biofunctionalization of the resin with 1 wt% Gel-MA allowed long term survival (>90%) of encapsulated cells up to 21 d, and enabled attachment and spreading of endothelial cells seeded on the printed hydrogels. Cell-laden hydrogel constructs of high resolution with complex and ordered architecture were successfully bioprinted, where the encapsulated cells remained viable, homogenously distributed and functional. Bone and cartilage tissue synthesis was confirmed by encapsulated stem cells, underlining the potential of these DLP-bioprinted hydrogels for tissue engineering and biofabrication. Overall, the PVA-MA/Gel-MA bio-resin is a promising material for biofabrication and provides important cues for the further development of lithography-based bioprinting of complex, free-form living tissue analogues.
Reference Module in Materials Science and Materials Engineering#R##N#Comprehensive Biomaterials II | 2017
Tim B. F. Woodfield; Khoon S. Lim; P. Morouço; Riccardo Levato; Jos Malda; Ferry P.W. Melchels
Biofabrication techniques offer the potential to produce living three-dimensional (3D) tissue constructs to repair or replace damaged or diseased human tissues and organs. Using these advanced Biofabrication techniques, constructs exhibiting spatial variation of cells, cellular building blocks, growth factors, and mechanical properties along multiple axes with high geometric complexity can be obtained. The level of control offered by these technologies to develop complex biofabricated tissues will allow tissue engineers to better study factors that modulate tissue formation and function, and provide a valuable tool to study graft performance as well as for high throughput screening of drug candidates in biofabricated tissue organoid models.