Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Khushbu K. Modi is active.

Publication


Featured researches published by Khushbu K. Modi.


Journal of Neuroimmune Pharmacology | 2013

Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: therapeutic implications for neurodegenerative disorders.

Arundhati Jana; Khushbu K. Modi; Avik Roy; John A. Anderson; Richard B. van Breemen; Kalipada Pahan

This study underlines the importance of cinnamon, a widely-used food spice and flavoring material, and its metabolite sodium benzoate (NaB), a widely-used food preservative and a FDA-approved drug against urea cycle disorders in humans, in increasing the levels of neurotrophic factors [e.g., brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3)] in the CNS. NaB, but not sodium formate (NaFO), dose-dependently induced the expression of BDNF and NT-3 in primary human neurons and astrocytes. Interestingly, oral administration of ground cinnamon increased the level of NaB in serum and brain and upregulated the levels of these neurotrophic factors in vivo in mouse CNS. Accordingly, oral feeding of NaB, but not NaFO, also increased the level of these neurotrophic factors in vivo in the CNS of mice. NaB induced the activation of protein kinase A (PKA), but not protein kinase C (PKC), and H-89, an inhibitor of PKA, abrogated NaB-induced increase in neurotrophic factors. Furthermore, activation of cAMP response element binding (CREB) protein, but not NF-κB, by NaB, abrogation of NaB-induced expression of neurotrophic factors by siRNA knockdown of CREB and the recruitment of CREB and CREB-binding protein to the BDNF promoter by NaB suggest that NaB exerts its neurotrophic effect through the activation of CREB. Accordingly, cinnamon feeding also increased the activity of PKA and the level of phospho-CREB in vivo in the CNS. These results highlight a novel neutrophic property of cinnamon and its metabolite NaB via PKA – CREB pathway, which may be of benefit for various neurodegenerative disorders.


Journal of Biological Chemistry | 2013

Up-regulation of Ciliary Neurotrophic Factor in Astrocytes by Aspirin IMPLICATIONS FOR REMYELINATION IN MULTIPLE SCLEROSIS

Khushbu K. Modi; Michael Sendtner; Kalipada Pahan

Background: An increase in ciliary neurotrophic factor (CNTF) in the brain may be beneficial for demyelinating disorders. Results: Aspirin, a widely used analgesic, increases CNTF in astrocytes via the PKA-CREB pathway. Conclusion: These results delineate a novel myelinogenic property of aspirin. Significance: Aspirin may be of therapeutic benefit in demyelinating disorders. Ciliary neurotrophic factor (CNTF) is a promyelinating trophic factor, and the mechanisms by which CNTF expression could be increased in the brain are poorly understood. Acetylsalicylic acid (aspirin) is one of the most widely used analgesics. Interestingly, aspirin increased mRNA and protein expression of CNTF in primary mouse and human astrocytes in a dose- and time-dependent manner. Aspirin induced the activation of protein kinase A (PKA) but not protein kinase C (PKC). H-89, an inhibitor of PKA, abrogated aspirin-induced expression of CNTF. The activation of cAMP-response element-binding protein (CREB), but not NF-κB, by aspirin, the abrogation of aspirin-induced expression of CNTF by siRNA knockdown of CREB, the presence of a consensus cAMP-response element in the promoter of CNTF, and the recruitment of CREB and CREB-binding protein to the CNTF promoter by aspirin suggest that aspirin increases the expression of the Cntf gene via the activation of CREB. Furthermore, we demonstrate that aspirin-induced astroglial CNTF was also functionally active and that supernatants of aspirin-treated astrocytes of wild type, but not Cntf null, mice increased myelin-associated proteins in oligodendrocytes and protected oligodendrocytes from TNF-α insult. These results highlight a new and novel myelinogenic property of aspirin, which may be of benefit for multiple sclerosis and other demyelinating disorders.


Journal of Biological Chemistry | 2015

Activation of Peroxisome Proliferator-activated Receptor α Induces Lysosomal Biogenesis in Brain Cells IMPLICATIONS FOR LYSOSOMAL STORAGE DISORDERS

Arunava Ghosh; Malabendu Jana; Khushbu K. Modi; Frank J. Gonzalez; Katherine B. Sims; Elizabeth Berry-Kravis; Kalipada Pahan

Background: Mechanisms by which lysosomal biogenesis is regulated are poorly understood. Results: Activation of PPARα stimulates lysosomal biogenesis via transcriptional up-regulation of TFEB. Conclusion: These results delineate a novel role of PPARα in controlling lysosomal biogenesis. Significance: Activation of PPARα may be of therapeutic benefit in lysosomal storage disorders. Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role.


PLOS ONE | 2014

A physically-modified saline suppresses neuronal apoptosis, attenuates tau phosphorylation and protects memory in an animal model of Alzheimer's disease

Khushbu K. Modi; Arundhati Jana; Supurna Ghosh; Richard T. Watson; Kalipada Pahan

Alzheimers disease (AD), the leading cause of dementia in the aging population, is characterized by the presence of neuritic plaques, neurofibrillary tangles and extensive neuronal apoptosis. Neuritic plaques are mainly composed of aggregates of amyloid-β (Aβ) protein while neurofibrillary tangles are composed of the hyperphosphorylated tau protein. Despite intense investigations, no effective therapy is currently available to halt the progression of this disease. Here, we have undertaken a novel approach to attenuate apoptosis and tau phosphorylation in cultured neuronal cells and in a transgenic animal model of AD. RNS60 is a 0.9% saline solution containing oxygenated nanobubbles that is generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. In our experiments, fibrillar Aβ1-42, but not the reverse peptide Aβ42-1, induced apoptosis and cell death in human SHSY5Y neuronal cells. RNS60, but not NS (normal saline), RNS10.3 (TCP-modified saline without excess oxygen) or PNS60 (saline containing excess oxygen without TCP modification), attenuated Aβ(1–42)-induced cell death. RNS60 inhibited neuronal cell death via activation of the type 1A phosphatidylinositol-3 (PI-3) kinase – Akt – BAD pathway. Furthermore, RNS60 also decreased Aβ(1–42)-induced tau phosphorylation via (PI-3 kinase – Akt)-mediated inhibition of GSK-3β. Similarly, RNS60 treatment suppressed neuronal apoptosis, attenuated Tau phosphorylation, inhibited glial activation, and reduced the burden of Aβ in the hippocampus and protected memory and learning in 5XFAD transgenic mouse model of AD. Therefore, RNS60 may be a promising pharmaceutical candidate in halting or delaying the progression of AD.


PLOS ONE | 2015

Cinnamon and Its Metabolite Sodium Benzoate Attenuate the Activation of p21rac and Protect Memory and Learning in an Animal Model of Alzheimer’s Disease

Khushbu K. Modi; Avik Roy; Saurabh Brahmachari; Suresh B. Rangasamy; Kalipada Pahan

This study underlines the importance of cinnamon, a commonly used natural spice and flavoring material, and its metabolite sodium benzoate (NaB) in attenuating oxidative stress and protecting memory and learning in an animal model of Alzheimer’s disease (AD). NaB, but not sodium formate, was found to inhibit LPS-induced production of reactive oxygen species (ROS) in mouse microglial cells. Similarly, NaB also inhibited fibrillar amyloid beta (Aβ)- and 1-methyl-4-phenylpyridinium(+)-induced microglial production of ROS. Although NaB reduced the level of cholesterol in vivo in mice, reversal of the inhibitory effect of NaB on ROS production by mevalonate, and geranylgeranyl pyrophosphate, but not cholesterol, suggests that depletion of intermediates, but not end products, of the mevalonate pathway is involved in the antioxidant effect of NaB. Furthermore, we demonstrate that an inhibitor of p21rac geranylgeranyl protein transferase suppressed the production of ROS and that NaB suppressed the activation of p21rac in microglia. As expected, marked activation of p21rac was observed in the hippocampus of subjects with AD and 5XFAD transgenic (Tg) mouse model of AD. However, oral feeding of cinnamon (Cinnamonum verum) powder and NaB suppressed the activation of p21rac and attenuated oxidative stress in the hippocampus of Tg mice as evident by decreased dihydroethidium (DHE) and nitrotyrosine staining, reduced homocysteine level and increased level of reduced glutathione. This was accompanied by suppression of neuronal apoptosis, inhibition of glial activation, and reduction of Aβ burden in the hippocampus and protection of memory and learning in transgenic mice. Therefore, cinnamon powder may be a promising natural supplement in halting or delaying the progression of AD.


Journal of Alzheimer's Disease | 2015

Intranasal Delivery of NEMO-Binding Domain Peptide Prevents Memory Loss in a Mouse Model of Alzheimer’s Disease

Suresh B. Rangasamy; Grant T. Corbett; Avik Roy; Khushbu K. Modi; David A. Bennett; Elliott J. Mufson; Sankar Ghosh; Kalipada Pahan

Alzheimers disease (AD) is the most common form of dementia. Despite intense investigations, no effective therapy is available to halt its progression. We found that NF-κB was activated within the hippocampus and cortex of AD subjects and that activated forms of NF-κB negatively correlated with cognitive function monitored by Mini-Mental State Examination and global cognitive z score. Accordingly, NF-κB activation was also observed in the hippocampus of a transgenic (5XFAD) mouse model of AD. It has been shown that peptides corresponding to the NF-κB essential modifier (NEMO)-binding domain (NBD) of IκB kinase α (IKKα) or IκB kinase β (IKKβ) specifically inhibit the induction of NF-κB activation without inhibiting the basal NF-κB activity. Interestingly, after intranasal administration, wild-type NBD peptide entered into the hippocampus, reduced hippocampal activation of NF-κB, suppressed hippocampal microglial activation, lowered the burden of Aβ in the hippocampus, attenuated apoptosis of hippocampal neurons, protected plasticity-related molecules, and improved memory and learning in 5XFAD mice. Mutated NBD peptide had no such protective effect, indicating the specificity of our finding. These results suggest that selective targeting of NF-κB activation by intranasal administration of NBD peptide may be of therapeutic benefit for AD patients.


PLOS ONE | 2014

Enhancement of morphological plasticity in hippocampal neurons by a physically modified saline via phosphatidylinositol-3 kinase.

Avik Roy; Khushbu K. Modi; Saurabh Khasnavis; Supurna Ghosh; Richard T. Watson; Kalipada Pahan

Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer’s disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias.


Neurochemical Research | 2015

Sodium benzoate, a metabolite of cinnamon and a food additive, upregulates ciliary neurotrophic factor in astrocytes and oligodendrocytes

Khushbu K. Modi; Malabendu Jana; Susanta Mondal; Kalipada Pahan

Ciliary neurotrophic factor (CNTF) is a promyelinating trophic factor that plays an important role in multiple sclerosis (MS). However, mechanisms by which CNTF expression could be increased in the brain are poorly understood. Recently we have discovered anti-inflammatory and immunomodulatory activities of sodium benzoate (NaB), a metabolite of cinnamon and a widely-used food additive. Here, we delineate that NaB is also capable of increasing the mRNA and protein expression of CNTF in primary mouse astrocytes and oligodendrocytes and primary human astrocytes. Accordingly, oral administration of NaB and cinnamon led to the upregulation of astroglial and oligodendroglial CNTF in vivo in mouse brain. Induction of experimental allergic encephalomyelitis, an animal model of MS, reduced the level of CNTF in the brain, which was restored by oral administration of cinnamon. While investigating underlying mechanisms, we observed that NaB induced the activation of protein kinase A (PKA) and H-89, an inhibitor of PKA, abrogated NaB-induced expression of CNTF. The activation of cAMP response element binding (CREB) protein by NaB, the recruitment of CREB and CREB-binding protein to the CNTF promoter by NaB and the abrogation of NaB-induced expression of CNTF in astrocytes by siRNA knockdown of CREB suggest that NaB increases the expression of CNTF via the activation of CREB. These results highlight a novel myelinogenic property of NaB and cinnamon, which may be of benefit for MS and other demyelinating disorders.


Journal of Neuroimmune Pharmacology | 2016

Cinnamon Converts Poor Learning Mice to Good Learners: Implications for Memory Improvement

Khushbu K. Modi; Suresh B. Rangasamy; Sridevi Dasarathi; Avik Roy; Kalipada Pahan

This study underlines the importance of cinnamon, a commonly used natural spice and flavoring material, and its metabolite sodium benzoate (NaB) in converting poor learning mice to good learning ones. NaB, but not sodium formate, was found to upregulate plasticity-related molecules, stimulate NMDA- and AMPA-sensitive calcium influx and increase of spine density in cultured hippocampal neurons. NaB induced the activation of CREB in hippocampal neurons via protein kinase A (PKA), which was responsible for the upregulation of plasticity-related molecules. Finally, spatial memory consolidation-induced activation of CREB and expression of different plasticity-related molecules were less in the hippocampus of poor learning mice as compared to good learning ones. However, oral treatment of cinnamon and NaB increased spatial memory consolidation-induced activation of CREB and expression of plasticity-related molecules in the hippocampus of poor-learning mice and converted poor learners into good learners. These results describe a novel property of cinnamon in switching poor learners to good learners via stimulating hippocampal plasticity.


Journal of Neurochemistry | 2017

Gemfibrozil, Food and Drug Administration-approved lipid-lowering drug, increases longevity in mouse model of Late Infantile Neuronal Ceroid Lipofuscinosis

Arunava Ghosh; Suresh B. Rangasamy; Khushbu K. Modi; Kalipada Pahan

Late Infantile Neuronal Ceroid Lipofuscinosis (LINCL) is a rare neurodegenerative disease caused by mutations in the Cln2 gene that leads to deficiency or loss of function of the tripeptidyl peptidase 1 (TPP1) enzyme. TPP1 deficiency is known to cause the accumulation of autofluoroscent lipid‐protein pigments in brain. Similar to other neurodegenerative disorders, LINCL is also associated with neuroinflammation and neuronal damage. Despite investigations, no effective therapy is currently available for LINCL. Therefore, we administered gemfibrozil (gem), an food and drug administration (FDA)‐approved lipid‐lowering drug, which has been shown to stimulate lysosomal biogenesis and induce anti‐inflammation, orally, at a dose of 7.5 mg/kg body wt/day to Cln2(−/−) mice. We observed that gem‐fed Cln2(−/−) mice lived longer by more than 10 weeks and had better motor activity compared to vehicle (0.1% Methyl cellulose) treatment. Gem treatment lowered the burden of storage materials, increased anti‐inflammatory factors like SOCS3 and IL‐1Ra, up‐regulated anti‐apoptotic molecule like phospho‐Bad, and reduced neuronal apoptosis in the brain of Cln2(−/−) mice. Collectively, this study reinforces a neuroprotective role of gem that may be of therapeutic interest in improving the quality of life in LINCL patients.

Collaboration


Dive into the Khushbu K. Modi's collaboration.

Top Co-Authors

Avatar

Kalipada Pahan

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Avik Roy

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Suresh B. Rangasamy

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Arunava Ghosh

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Arundhati Jana

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Malabendu Jana

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Bennett

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Berry-Kravis

Rush University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge