Ki Joon Cho
Korea University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ki Joon Cho.
Vaccine | 2009
Lei Deng; Ki Joon Cho; Walter Fiers; Xavier Saelens
Human influenza causes substantial morbidity and mortality. Currently, licensed influenza vaccines offer satisfactory protection if they match the infecting strain, but they come with significant drawbacks. These vaccines are derived from prototype viruses, containing the hemagglutinin of influenza viruses that are likely to cause the next epidemic. Their usefulness against a future pandemic, however, remains problematic. A vaccine based on the ectodomain of influenza matrix protein 2 (M2e) could overcome these drawbacks. M2e is highly conserved in both human and avian influenza A viruses. The low immunogenicity against natural M2e can be overcome by fusing M2e to an appropriate carrier such as Hepatitis B virus-derived virus-like particles. Such chimeric particles can be produced in a simple and safe bacterial expression system, requiring minimal biocontainment, and can be obtained in a pure form. Experiments in animal models have demonstrated that M2e-based vaccines induce protection against a lethal challenge with various influenza A virus subtypes. Furthermore, the production and use of an effective M2e-vaccine could be implemented at any time regardless of seasonality, both in an epidemic as well as in a pandemic preparedness program. In animal models, M2e-vaccines administered parenterally or intranasally protect against disease and mortality following challenge with various influenza A strains. Adjuvants suitable for human use improve protection, which correlates with higher anti-M2e antibody responses of defined subtypes. Recently, Phase I clinical studies with M2e-vaccines have been completed, indicating their safety and immunogenicity. Further clinical development of this universal influenza A vaccine candidate is being pursued in order to validate its protective efficacy in humans.
Journal of Molecular Biology | 2009
Ki Joon Cho; Hye Jeong Shin; Ji Hye Lee; Kyung Jin Kim; Sarah S. Park; Youngmi Lee; Cheolju Lee; Sung Soo Park; Kyung Hyun Kim
The crystal structure of recombinant ferritin from Helicobacter pylori has been determined in its apo, low-iron-bound, intermediate, and high-iron-bound states. Similar to other members of the ferritin family, the bacterial ferritin assembles as a spherical protein shell of 24 subunits, each of which folds into a four-alpha-helix bundle. Significant conformational changes were observed at the BC loop and the entrance of the 4-fold symmetry channel in the intermediate and high-iron-bound states, whereas no change was found in the apo and low-iron-bound states. The imidazole rings of His149 at the channel entrance undergo conformational changes that bear resemblance to heme configuration and are directly coupled to axial translocation of Fe ions through the 4-fold channel. Our results provide the first structural evidence of the translocation of Fe ions through the 4-fold channel in prokaryotes and the transition from a protein-dominated process to a mineral-surface-dominated process during biomineralization.
Foodborne Pathogens and Disease | 2012
Mi Oh; Seon Young Bae; Ji-Hye Lee; Ki Joon Cho; Kyung Hyun Kim; Mi Sook Chung
Abstract Human noroviruses (HuNoVs) are the most frequent cause of foodborne viral gastroenteritis, causing approximately 90% of non-bacterial epidemic outbreaks around the world. Rubus coreanus is a species of black raspberry, rich in polyphenols, and known to exert anti-inflammatory, antibacterial, and antiviral activities. In the present study, the antiviral effects of R. coreanus juice (black raspberry [BRB] juice) on foodborne viral surrogates, murine norovirus-1 (MNV-1) and feline calicivirus-F9 (FCV-F9), were compared with those of cranberry juice, grape juice, and orange juice by plaque assays. Among the four juices tested, BRB juice was the most effective in reducing plaques formation of these viruses. Time-of-addition experiments were designed to determine the mechanism of action of BRB juice on MNV-1 and FCV-F9. The maximal antiviral effect of BRB juice against MNV-1 was observed when it was added to RAW 264.7 cells (mouse leukemic monocyte macrophage cell line) simultaneously with the virus. Pre-treatment of either Crandell Reese Feline Kidney cells or FCV-F9 with BRB juice exhibited significant antiviral activity. The inhibition of viral infection by BRB juice on MNV-1 and FCV-F9 probably occurs at the internalization of virions into the cell or the attachment of the viral surface protein to the cellular receptor. The polyphenol components in BRB (i.e., gallic acid and quercetin), however, did not show any activity against these viruses. Our data provide great promise for the utilization of BRB in the prevention of foodborne viral outbreaks.
Virology | 2012
Intekhab Alam; Ji-Hye Lee; Ki Joon Cho; Kang Rok Han; Jai Myung Yang; Mi Sook Chung; Kyung Hyun Kim
Murine norovirus-1 (MNV-1) shares many features with human norovirus (HuNoV) and both are classified within the norovirus genus of Caliciviridae family. MNV-1 is used as the surrogate for HuNoV research since it is the only form that can be grown in cell culture. HuNoV and MNV-1 RNA dependent RNA polymerase (RdRp) proteins with the sequence identity of 59% show essentially identical conformations. Here we report the first structural evidence of 2-thiouridine (2TU) or ribavirin binding to MNV-1 RdRp, based on the crystal structures determined at 2.2Å and 2.5Å resolutions, respectively. Cellular and biochemical studies revealed stronger inhibitory effect of 2TU on the replication of MNV-1 in RAW 264.7 cells, compared to that of ribavirin. Our complex structures highlight the key interactions involved in recognition of the nucleoside analogs which block the active site of the viral RNA polymerase.
Journal of Virology | 2015
Ki Joon Cho; Bert Schepens; Jong Hyeon Seok; Sella Kim; Kenny Roose; Ji-Hye Lee; Rodrigo Gallardo; Evelien Van Hamme; Joost Schymkowitz; Frederic Rousseau; Walter Fiers; Xavier Saelens; Kyung Hyun Kim
ABSTRACT The extracellular domain of influenza A virus matrix protein 2 (M2e) is conserved and is being evaluated as a quasiuniversal influenza A vaccine candidate. We describe the crystal structure at 1.6 Å resolution of M2e in complex with the Fab fragment of an M2e-specific monoclonal antibody that protects against influenza A virus challenge. This antibody binds M2 expressed on the surfaces of cells infected with influenza A virus. Five out of six complementary determining regions interact with M2e, and three highly conserved M2e residues are critical for this interaction. In this complex, M2e adopts a compact U-shaped conformation stabilized in the center by the highly conserved tryptophan residue in M2e. This is the first description of the three-dimensional structure of M2e. IMPORTANCE M2e of influenza A is under investigation as a universal influenza A vaccine, but its three-dimensional structure is unknown. We describe the structure of M2e stabilized with an M2e-specific monoclonal antibody that recognizes natural M2. We found that the conserved tryptophan is positioned in the center of the U-shaped structure of M2e and stabilizes its conformation. The structure also explains why previously reported in vivo escape viruses, selected with a similar monoclonal antibody, carried proline residue substitutions at position 10 in M2.
Journal of Virology | 2016
Ki Joon Cho; Bert Schepens; Kristof Moonens; Lei Deng; Walter Fiers; Han Remaut; Xavier Saelens
ABSTRACT We report the crystal structure of the M2 ectodomain (M2e) in complex with a monoclonal antibody that binds the amino terminus of M2. M2e extends into the antibody binding site to form an N-terminal β-turn near the bottom of the paratope. This M2e folding differs significantly from that of M2e in complex with an antibody that binds another part of M2e. This suggests that M2e can adopt at least two conformations that can elicit protective antibodies.
PLOS ONE | 2014
Ki Joon Cho; Kwang W. Hong; Se-Ho Kim; Jong Hyeon Seok; Sella Kim; Ji-Hye Lee; Xavier Saelens; Kyung Hyun Kim
Influenza viruses continuously undergo antigenic changes with gradual accumulation of mutations in hemagglutinin (HA) that is a major determinant in subtype specificity. The identification of conserved epitopes within specific HA subtypes gives an important clue for developing new vaccines and diagnostics. We produced and characterized nine monoclonal antibodies that showed significant neutralizing activities against H1 subtype influenza viruses, and determined the complex structure of HA derived from a 2009 pandemic virus A/Korea/01/2009 (KR01) and the Fab fragment from H1-specific monoclonal antibody GC0587. The overall structure of the complex was essentially identical to the previously determined KR01 HA-Fab0757 complex structure. Both Fab0587 and Fab0757 recognize readily accessible head regions of HA, revealing broadly shared and conserved antigenic determinants among H1 subtypes. The β-strands constituted by Ser110-Glu115 and Lys169-Lys170 form H1 epitopes with distinct conformations from those of H1 and H3 HA sites. In particular, Glu112, Glu115, Lys169, and Lys171 that are highly conserved among H1 subtype HAs have close contacts with HCDR3 and LCDR3. The differences between Fab0587 and Fab0757 complexes reside mainly in HCDR3 and LCDR3, providing distinct antigenic determinants specific for 1918 pdm influenza strain. Our results demonstrate a potential key neutralizing epitope important for H1 subtype specificity in influenza virus.
Biochemical and Biophysical Research Communications | 2010
In Seok Yang; Tae Gyun Kim; Bum Seok Park; Ki Joon Cho; Ji-Hye Lee; Yiho Park; Kyung Hyun Kim
The crystal structures of aprotinin and its complex with sucrose octasulfate (SOS), a polysulfated heparin analog, were determined at 1.7-2.6A resolutions. Aprotinin is monomeric in solution, which associates into a decamer at high salt concentrations. Sulfate ions serve to neutralize the basic amino acid residues of aprotinin to stabilize the decameric aprotinin. Whereas SOS interacts with heparin binding proteins at 1:1 molar ratio, SOS was surprisingly found to induce strong agglutination of aprotinins. Five molecules of aprotinin interact with one molecule of the sulfated sugar, which is stabilized by electrostatic interactions between the positively charged residues of aprotinin and sulfate groups of SOS. The multiple binding modes of SOS with five individual aprotinin molecules may represent the diverse patterns of potential heparin binding to aprotinin, reflecting the interactions of densely packed protein molecules along the heparin polymer.
Biochemical and Biophysical Research Communications | 2009
Ki Joon Cho; Jin Kwang Kim; Ji Hye Lee; Hye Jeong Shin; Sung Soo Park; Kyung Hyun Kim
Cephalosporin acylase (CA), a member of the N-terminal nucleophile hydrolase family, is activated through two steps of intramolecular autoproteolysis, the first mediated by a serine residue, and the second by a glutamate, which releases the pro-segment and produces an active enzyme. In this study, we have determined the crystal structures of mutants which could affect primary or secondary auto-cleavage and of sequential intermediates of a slow-processing mutant at 2.0-2.5A resolutions. The pro-segments of the mutants undergo dynamic conformational changes during activation and adopt surprisingly different loop conformations from one another. However, the autoproteolytic site was found to form a catalytically competent conformation with a solvent water molecule, which was essentially conserved in the CA mutants.
Scientific Reports | 2017
Jong Hyeon Seok; Jeongwon Kim; Dan Bi Lee; Ki Joon Cho; Ji-Hye Lee; Garam Bae; Mi Sook Chung; Kyung Hyun Kim
Mutational changes that mostly occur at the head region of hemagglutinin (HA) lead to the emergence of new epidemic influenza viruses, whereas HA antigens have been modified to generate broadly neutralizing antibodies toward highly conserved epitopes in the HA stem. Interestingly, a recent analysis of serum antibody repertoires showed that broadly neutralizing antibodies bind to HA monomer at a conserved region occluded at the intermonomer interface of HA trimer and confer protection in animal models. We showed previously that the recombinant HA ectodomain from a pandemic strain A/Korea/01/2009 was monomeric in solution and crystal structure. In order to examine the potential antigenicity of a monomeric form, we designed HA monomer that incorporates mutations to destabilize trimer conformations. Starting with the HA trimer from a seasonal strain A/Thailand/CU44/2006, mutations were introduced at the intermonomer interface, Ser199 of HA1 and Gly47, Arg75, Phe88, Val91, and Arg106 of HA2. Two mutants, F88E and V91W, were characterized to form a monomer and their double mutant F88E/V91W monomer was selected as an antigen. Animal studies showed that the HA monomer induced protective immunity in vivo, comparable to the trimer, albeit low antibody titers in sera.