Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ki Kang Kim is active.

Publication


Featured researches published by Ki Kang Kim.


Nano Letters | 2012

van der Waals Epitaxy of MoS2 Layers Using Graphene As Growth Templates

Yumeng Shi; Wu Zhou; Ang-Yu Lu; Wenjing Fang; Yi-Hsien Lee; Allen Hsu; Soo Min Kim; Ki Kang Kim; Hui Ying Yang; Lain-Jong Li; Juan-Carlos Idrobo; Jing Kong

We present a method for synthesizing MoS(2)/Graphene hybrid heterostructures with a growth template of graphene-covered Cu foil. Compared to other recent reports, (1, 2) a much lower growth temperature of 400 °C is required for this procedure. The chemical vapor deposition of MoS(2) on the graphene surface gives rise to single crystalline hexagonal flakes with a typical lateral size ranging from several hundred nanometers to several micrometers. The precursor (ammonium thiomolybdate) together with solvent was transported to graphene surface by a carrier gas at room temperature, which was then followed by post annealing. At an elevated temperature, the precursor self-assembles to form MoS(2) flakes epitaxially on the graphene surface via thermal decomposition. With higher amount of precursor delivered onto the graphene surface, a continuous MoS(2) film on graphene can be obtained. This simple chemical vapor deposition method provides a unique approach for the synthesis of graphene heterostructures and surface functionalization of graphene. The synthesized two-dimensional MoS(2)/Graphene hybrids possess great potential toward the development of new optical and electronic devices as well as a wide variety of newly synthesizable compounds for catalysts.


Nano Letters | 2010

Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition

Yumeng Shi; Christoph Hamsen; Xiaoting Jia; Ki Kang Kim; Alfonso Reina; Mario Hofmann; Allen Hsu; Kai Zhang; Henan Li; Zhen-Yu Juang; Mildred S. Dresselhaus; Lain-Jong Li; Jing Kong

In this contribution we demonstrate a method of synthesizing a hexagonal boron nitride (h-BN) thin film by ambient pressure chemical vapor deposition on polycrystalline Ni films. Depending on the growth conditions, the thickness of the obtained h-BN film is between ∼5 and 50 nm. The h-BN grows continuously on the entire Ni surface and the region with uniform thickness can be up to 20 μm in lateral size which is only limited by the size of the Ni single crystal grains. The hexagonal structure was confirmed by both electron and X-ray diffraction. X-ray photoelectron spectroscopy shows the B/N atomic ratio to be 1:1.12. A large optical band gap (5.92 eV) was obtained from the photoabsorption spectra which suggest the potential usage of this h-BN film in optoelectronic devices.


Nano Letters | 2012

Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition

Ki Kang Kim; Allen Hsu; Xiaoting Jia; Soo Min Kim; Yumeng Shi; Mario Hofmann; Daniel Nezich; Joaquin F. Rodriguez-Nieva; Mildred S. Dresselhaus; Tomas Palacios; Jing Kong

Hexagonal boron nitride (h-BN) is very attractive for many applications, particularly, as protective coating, dielectric layer/substrate, transparent membrane, or deep ultraviolet emitter. In this work, we carried out a detailed investigation of h-BN synthesis on Cu substrate using chemical vapor deposition (CVD) with two heating zones under low pressure (LP). Previous atmospheric pressure (AP) CVD syntheses were only able to obtain few layer h-BN without a good control on the number of layers. In contrast, under LPCVD growth, monolayer h-BN was synthesized and time-dependent growth was investigated. It was also observed that the morphology of the Cu surface affects the location and density of the h-BN nucleation. Ammonia borane is used as a BN precursor, which is easily accessible and more stable under ambient conditions than borazine. The h-BN films are characterized by atomic force microscopy, transmission electron microscopy, and electron energy loss spectroscopy analyses. Our results suggest that the growth here occurs via surface-mediated growth, which is similar to graphene growth on Cu under low pressure. These atomically thin layers are particularly attractive for use as atomic membranes or dielectric layers/substrates for graphene devices.


ACS Nano | 2010

Work Function Engineering of Graphene Electrode via Chemical Doping

Yumeng Shi; Ki Kang Kim; Alfonso Reina; Mario Hofmann; Lain-Jong Li; Jing Kong

In this work, we demonstrate that graphene films synthesized by chemical vapor deposition (CVD) method can be used as thin transparent electrodes with tunable work function. By immersing the CVD-grown graphene films into AuCl(3) solution, Au particles were formed on the surface of graphene films by spontaneous reduction of metal ions. The surface potential of graphene films can be adjusted (by up to approximately 0.5 eV) by controlling the immersion time. Photovoltaic devices based on n-type silicon interfacing with graphene films were fabricated to demonstrate the benefit of an electrode with tunable work function. The maximum power conversion efficiency (PCE) achieved was approximately 0.08%, which is more than 40 times larger than the devices without chemical doping.


Nanotechnology | 2010

Enhancing the conductivity of transparent graphene films via doping

Ki Kang Kim; Alfonso Reina; Yumeng Shi; Hyesung Park; Lain-Jong Li; Young Hee Lee; Jing Kong

We report chemical doping (p-type) to reduce the sheet resistance of graphene films for the application of high-performance transparent conducting films. The graphene film synthesized by chemical vapor deposition was transferred to silicon oxide and quartz substrates using poly(methyl methacrylate). AuCl(3) in nitromethane was used to dope the graphene films and the sheet resistance was reduced by up to 77% depending on the doping concentration. The p-type doping behavior was confirmed by characterizing the Raman G-band of the doped graphene film. Atomic force microscope and scanning electron microscope images reveal the deposition of Au particles on the film. The sizes of the Au particles are 10-100 nm. The effect of doping was also investigated by transferring the graphene films onto quartz and poly(ethylene terephthalate) substrates. The sheet resistance reached 150 Omega/sq at 87% transmittance, which is comparable to those of indium tin oxide conducting film. The doping effect was manifested only with 1-2 layer graphene but not with multi-layer graphene. This approach advances the numerous applications of graphene films as transparent conducting electrodes.


Nature Chemistry | 2012

Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography

Qing Hua Wang; Zhong Jin; Ki Kang Kim; Andrew J. Hilmer; Geraldine L C Paulus; Chih-Jen Shih; Moon Ho Ham; Javier Sanchez-Yamagishi; Kenji Watanabe; Takashi Taniguchi; Jing Kong; Pablo Jarillo-Herrero; Michael S. Strano

Graphene has exceptional electronic, optical, mechanical and thermal properties, which provide it with great potential for use in electronic, optoelectronic and sensing applications. The chemical functionalization of graphene has been investigated with a view to controlling its electronic properties and interactions with other materials. Covalent modification of graphene by organic diazonium salts has been used to achieve these goals, but because graphene comprises only a single atomic layer, it is strongly influenced by the underlying substrate. Here, we show a stark difference in the rate of electron-transfer reactions with organic diazonium salts for monolayer graphene supported on a variety of substrates. Reactions proceed rapidly for graphene supported on SiO(2) and Al(2)O(3) (sapphire), but negligibly on alkyl-terminated and hexagonal boron nitride (hBN) surfaces, as shown by Raman spectroscopy. We also develop a model of reactivity based on substrate-induced electron-hole puddles in graphene, and achieve spatial patterning of chemical reactions in graphene by patterning the substrate.The chemical functionalization of graphene enables control over electronic properties and sensor recognition sites. However, its study is confounded by an unusually strong influence of the underlying substrate. In this paper, we show a stark difference in the rate of electron transfer chemistry with aryl diazonium salts on monolayer graphene supported on a broad range of substrates. Reactions proceed rapidly when graphene is on SiO_2 and Al_2O_3 (sapphire), but negligibly on alkyl-terminated and hexagonal boron nitride (hBN) surfaces. The effect is contrary to expectations based on doping levels and can instead be described using a reactivity model accounting for substrate-induced electron-hole puddles in graphene. Raman spectroscopic mapping is used to characterize the effect of the substrates on graphene. Reactivity imprint lithography (RIL) is demonstrated as a technique for spatially patterning chemical groups on graphene by patterning the underlying substrate, and is applied to the covalent tethering of proteins on graphene.


ACS Nano | 2012

Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices.

Ki Kang Kim; Allen Hsu; Xiaoting Jia; Soo Min Kim; Yumeng Shi; Mildred S. Dresselhaus; Tomas Palacios; Jing Kong

Hexagonal boron nitride (h-BN) is a promising material as a dielectric layer or substrate for two-dimensional electronic devices. In this work, we report the synthesis of large-area h-BN film using atmospheric pressure chemical vapor deposition on a copper foil, followed by Cu etching and transfer to a target substrate. The growth rate of h-BN film at a constant temperature is strongly affected by the concentration of borazine as a precursor and the ambient gas condition such as the ratio of hydrogen and nitrogen. h-BN films with different thicknesses can be achieved by controlling the growth time or tuning the growth conditions. Transmission electron microscope characterization reveals that these h-BN films are polycrystalline, and the c-axis of the crystallites points to different directions. The stoichiometry ratio of boron and nitrogen is close to 1:1, obtained by electron energy loss spectroscopy. The dielectric constant of h-BN film obtained by parallel capacitance measurements (25 μm(2) large areas) is 2-4. These CVD-grown h-BN films were integrated as a dielectric layer in top-gated CVD graphene devices, and the mobility of the CVD graphene device (in the few thousands cm(2)/(V·s) range) remains the same before and after device integration.


Nanotechnology | 2010

Doped graphene electrodes for organic solar cells

Hyesung Park; Jill A. Rowehl; Ki Kang Kim; Vladimir Bulovic; Jing Kong

In this work graphene sheets grown by chemical vapor deposition (CVD) with controlled numbers of layers were used as transparent electrodes in organic photovoltaic (OPV) devices. It was found that for devices with pristine graphene electrodes, the power conversion efficiency (PCE) is comparable to their counterparts with indium tin oxide (ITO) electrodes. Nevertheless, the chances for failure in OPVs with pristine graphene electrodes are higher than for those with ITO electrodes, due to the surface wetting challenge between the hole-transporting layer and the graphene electrodes. Various alternative routes were investigated and it was found that AuCl(3) doping on graphene can alter the graphene surface wetting properties such that a uniform coating of the hole-transporting layer can be achieved and device success rate can be increased. Furthermore, the doping both improves the conductivity and shifts the work function of the graphene electrode, resulting in improved overall PCE performance of the OPV devices. This work brings us one step further toward the future use of graphene transparent electrodes as a replacement for ITO.


Journal of the American Chemical Society | 2008

Fermi Level Engineering of Single-Walled Carbon Nanotubes by AuCl3 Doping

Ki Kang Kim; Jung Jun Bae; Hyeon Ki Park; Soo Min Kim; Hong-Zhang Geng; Kyung Ah Park; Hyeon-Jin Shin; Seon-Mi Yoon; Anass Benayad; Jae-Young Choi; Young Hee Lee

We investigated the modulation of optical properties of single-walled carbon nanotubes (SWCNTs) by AuCl 3 doping. The van Hove singularity transitions (E 11 (S), E 22 (S), E 11 (M)) in absorption spectroscopy disappeared gradually with an increasing doping concentration and a new peak appeared at a high doping concentration. The work function was downshifted up to 0.42 eV by a strong charge transfer from the SWCNTs to AuCl 3 by a high level of p-doping. We propose that this large work function shift forces the Fermi level of the SWCNTs to be located deep in the valence band, i.e., highly degenerate, creating empty van Hove singularity states, and hence the work function shift invokes a new asymmetric transition in the absorption spectroscopy from a deeper level to newly generated empty states.


Journal of the American Chemical Society | 2008

Tailoring Electronic Structures of Carbon Nanotubes by Solvent with Electron-Donating and -Withdrawing Groups

Hyeon-Jin Shin; Soo Min Kim; Seon-Mi Yoon; Anass Benayad; Ki Kang Kim; Sung Jin Kim; Hyun Ki Park; Jae-Young Choi; Young Hee Lee

Various electron-donating and -withdrawing groups in aromatic and aliphatic backbones of solvent have been introduced to tailor the electronic structures of single-walled carbon nanotubes (SWCNTs). In the case of solvent with a withdrawing group, electrons were extracted mainly from metallic SWCNTs, whereas small charge transfer was also observed in semiconducting SWCNTs. On the other hand, in the case of solvent with a donating group, electrons were donated to both metallic and semiconducting SWCNTs. This effect was less prominent in solvent with an aliphatic backbone than that with an aromatic backbone. The strong correlation between the sheet resistance and electronic structures of nanotubes is further discussed in conjunction with a modulation of Schottky barrier height.

Collaboration


Dive into the Ki Kang Kim's collaboration.

Top Co-Authors

Avatar

Young Hee Lee

Samsung Corning Precision Glass

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Kong

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Allen Hsu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kay Hyeok An

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Tomas Palacios

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong-Zhang Geng

Tianjin Polytechnic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge