Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ki Tae Ha is active.

Publication


Featured researches published by Ki Tae Ha.


PLOS ONE | 2014

The ganglioside GM3 is associated with cisplatin-induced apoptosis in human colon cancer cells

Tae Wook Chung; Hee-Jung Choi; Seok Jo Kim; Choong Hwan Kwak; Kwon Ho Song; Un Ho Jin; Young Chae Chang; Hyeun Wook Chang; Young Choon Lee; Ki Tae Ha; Cheorl Ho Kim

Cisplatin (cis-diamminedichloroplatinum, CDDP) is a well-known chemotherapeutic agent for the treatment of several cancers. However, the precise mechanism underlying apoptosis of cancer cells induced by CDDP remains unclear. In this study, we show mechanistically that CDDP induces GM3-mediated apoptosis of HCT116 cells by inhibiting cell proliferation, and increasing DNA fragmentation and mitochondria-dependent apoptosis signals. CDDP induced apoptosis within cells through the generation of reactive oxygen species (ROS), regulated the ROS-mediated expression of Bax, Bcl-2, and p53, and induced the degradation of the poly (ADP-ribosyl) polymerase (PARP). We also checked expression levels of different gangliosides in HCT116 cells in the presence or absence of CDDP. Interestingly, among the gangliosides, CDDP augmented the expression of only GM3 synthase and its product GM3. Reduction of the GM3 synthase level through ectopic expression of GM3 small interfering RNA (siRNA) rescued HCT116 cells from CDDP-induced apoptosis. This was evidenced by inhibition of apoptotic signals by reducing ROS production through the regulation of 12-lipoxigenase activity. Furthermore, the apoptotic sensitivity to CDDP was remarkably increased in GM3 synthase-transfected HCT116 cells compared to that in controls. In addition, GM3 synthase-transfected cells treated with CDDP exhibited an increased accumulation of intracellular ROS. These results suggest the CDDP-induced oxidative apoptosis of HCT116 cells is mediated by GM3.


The International Journal of Biochemistry & Cell Biology | 2014

Monosialic ganglioside GM3 specifically suppresses the monocyte adhesion to endothelial cells for inflammation

Seok Jo Kim; Tae Wook Chung; Hee-Jung Choi; Un Ho Jin; Ki Tae Ha; Young Choon Lee; Cheorl Ho Kim

Vascular endothelial growth factor (VEGF) is well known as a significant angiogenic factor, and also functions as a proinflammatory cytokine, which induces adhesion of leukocyte to endothelial cells in inflammation reaction. In this study, we show that ganglioside GM3 inhibits the VEGF-induced expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) through activation of nuclear factor-κB (NF-κB) via protein kinase B (AKT) signaling in human umbilical vein endothelial cells (HUVECs), relating with leukocyte recruitment to endothelial cells under inflammatory conditions. In addition, ganglioside GM3 significantly reduced the monocyte adhesion to HUVECs as determined by the monolayer cell adhesion assay. Furthermore, in VEGF-injected mice for the inflammatory condition, ganglioside GM3 markedly decreased the expression of ICAM-1 and VCAM-1 in vein tissues. These results suggest that ganglioside GM3 has an anti-inflammatory role by suppressing the expression of inflammatory-related molecules during in vitro and in vivo inflammation.


Molecular Cancer | 2014

Hepatitis B virus X protein specially regulates the sialyl lewis a synthesis among glycosylation events for metastasis.

Tae Wook Chung; Seok Jo Kim; Hee-Jung Choi; Kwon Ho Song; Un Ho Jin; Dae Yeul Yu; Je Kyung Seong; Jong Guk Kim; Keuk Jun Kim; Jeong Heon Ko; Ki Tae Ha; Young Choon Lee; Cheorl Ho Kim

BackgroundThe metastasis of hematogenous cancer cells is associated with abnormal glycosylation such as sialyl lewis antigens. Although the hepatitis B virus X protein (HBx) plays important role in liver disease, the precise function of HBx on aberrant glycosylation for metastasis remains unclear.MethodsThe human hepatocellular carcinoma tissues, HBx transgenic mice and HBx-transfected cells were used to check the correlation of expressions between HBx and Sialyl lewis antigen for cancer metastasis. To investigate whether expression levels of glycosyltransferases induced in HBx-transfected cells are specifically associated with sialyl lewis A (SLA) synthesis, which enhances metastasis by interaction of liver cancer cells with endothelial cells, ShRNA and siRNAs targeting specific glycosyltransferases were used.ResultsHBx expression in liver cancer region of HCC is associated with the specific synthesis of SLA. Furthermore, the SLA was specifically induced both in liver tissues from HBx-transgenic mice and in in vitro HBx-transfected cells. HBx increased transcription levels and activities of α2-3 sialyltransferases (ST3Gal III), α1-3/4 fucosyltransferases III and VII (FUT III and VII) genes, which were specific for SLA synthesis, allowing dramatic cell-cell adhesion for metastatic potential. Interestingly, HBx specifically induced expression of N-acetylglucosamine-β1-3 galactosyltransferase V (β1-3GalT 5) gene associated with the initial synthesis of sialyl lewis A, but not β1-4GalT I. The β1-3GalT 5 shRNA suppressed SLA expression by HBx, blocking the adhesion of HBx-transfected cells to the endothelial cells. Moreover, β1-3GalT 5 silencing suppressed lung metastasis of HBx-transfected cells in in vivo lung metastasis system.ConclusionHBx targets the specific glycosyltransferases for the SLA synthesis and this process regulates hematogenous cancer cell adhesion to endothelial cells for cancer metastasis.


Journal of Molecular Medicine | 2013

CAPE suppresses VEGFR-2 activation, and tumor neovascularization and growth

Tae Wook Chung; Seok Jo Kim; Hee-Jung Choi; Choong Hwan Kwak; Kwon Ho Song; Seok Jong Suh; Keuk Jun Kim; Ki Tae Ha; Young-Guk Park; Young Chae Chang; Hyeun Wook Chang; Young Choon Lee; Cheorl Ho Kim

The growth and metastasis of human solid tumors and the development of conditions such as diabetic retinopathy, rheumatoid arthritis, inflammatory psoriasis, and others are regulated by the balance between angiogenic stimulators and inhibitors released in the angiogenic–pathological microenvironment. Vascular endothelial growth factor (VEGF), an angiogenic factor, is a potent endothelial-specific mitogen that activates endothelial cells in pathological angiogenesis. Recently, we demonstrated that caffeic acid phenethyl ester (CAPE) inhibits tumor growth, invasion, and metastasis. However, the precise molecular mechanism underlying the inhibitory effect of CAPE on VEGF-mediated angiogenesis remains unknown. Here, we show that CAPE suppressed VEGF-induced proliferation, tube formation, migration, the formation of actin stress fibers and loss of VE-cadherin at cell–cell contacts in endothelial cells, indicating the inhibition of VEGF-mediated VEGF receptor-2 (VEGFR-2) and its downstream signal activation in vitro. CAPE blocked VEGF-stimulated neovascularization in the Matrigel plugs assay, and reduced vascular permeability in mouse skin capillaries in vivo. CAPE inhibited the growth and neovascularization of primary tumor cells in C57BL/6 and BALB/c mice inoculated with Lewis lung carcinoma, colon carcinoma, and melanoma cells. These results suggest that CAPE negatively modulates VEGF-induced angiogenesis by suppressing VEGFR-2 activation, and might be a therapeutic avenue for anti-angiogenesis.


Oncotarget | 2017

Sialyllactose suppresses angiogenesis by inhibiting VEGFR-2 activation, and tumor progression

Tae Wook Chung; Eun Young Kim; Seok Jo Kim; Hee-Jung Choi; Se Bok Jang; Keuk Jun Kim; Sun Hyung Ha; Fukushi Abekura; Choong Hwan Kwak; Cheorl Ho Kim; Ki Tae Ha

The oligosaccharides in human milk have various biological functions. However, the molecular mechanism(s) underlying the anti-angiogenic action of sialylated human milk oligosaccharides (HMOs) are still unclear. Here, we show that siallylactose (SL) found in human milk can inhibit the activation of vascular endothelial growth factor (VEGF)-mediated VEGF receptor-2 (VEGFR-2) by binding to its VEGF binding site (second and third IgG-like domains), thus blocking downstream signal activation. SL also inhibits growth of VEGF-stimulated endothelial cells. In endothelial cells treated with VEGF, SL diminished tube formation, migration, and the arrangement of actin filament. In addition, SL clearly suppressed VEGF-induced neovascularization in an in vivo Matrigel plug assay. Notably, SL prevented the growth of tumor cells, and angiogenesis on tumor tissues in in vivo mice models allotransplanted with Lewis lung carcinoma, melanoma, and colon carcinoma cells. Taken together, we have demonstrated that the sialylated milk oligosaccharide sialyllactose functions as an inhibitor of angiogenesis through suppression of VEGF-mediated VEGFR-2 activation in endothelial cells, Accordingly, it could be a novel candidate for the development of anti-angiogenic drugs without any side effects.The oligosaccharides in human milk have various biological functions. However, the molecular mechanism(s) underlying the anti-angiogenic action of sialylated human milk oligosaccharides (HMOs) are still unclear. Here, we show that siallylactose (SL) found in human milk can inhibit the activation of vascular endothelial growth factor (VEGF)-mediated VEGF receptor-2 (VEGFR-2) by binding to its VEGF binding site (second and third IgG-like domains), thus blocking downstream signal activation. SL also inhibits growth of VEGF-stimulated endothelial cells. In endothelial cells treated with VEGF, SL diminished tube formation, migration, and the arrangement of actin filament. In addition, SL clearly suppressed VEGF-induced neovascularization in an in vivo Matrigel plug assay. Notably, SL prevented the growth of tumor cells, and angiogenesis on tumor tissues in in vivo mice models allotransplanted with Lewis lung carcinoma, melanoma, and colon carcinoma cells. Taken together, we have demonstrated that the sialylated milk oligosaccharide sialyllactose functions as an inhibitor of angiogenesis through suppression of VEGF-mediated VEGFR-2 activation in endothelial cells, Accordingly, it could be a novel candidate for the development of anti-angiogenic drugs without any side effects.


Oncology Letters | 2017

Inhibition of lung cancer growth by HangAmDan-B is mediated by macrophage activation to M1 subtype

Hye‑Rin Park; Eun Ji Lee; Seong‑Cheol Moon; Tae Wook Chung; Keuk Jun Kim; Hwa‑Seung Yoo; Chong‑Kwan Cho; Ki Tae Ha

Re-education of tumor-associated macrophages (TAMs) toward antitumor effectors may be a promising therapeutic strategy for the successful treatment of cancer. HangAmDan-B (HAD-B), a herbal formula, has been used for stimulating immune function and activation of vital energy to cancer patients in traditional Korean Medicine. Previous studies have reported the anti-angiogenic and anti-metastatic effects of HAD-B; however, evidence on the immunomodulatory action of HAD-B was not demonstrated. In the present study, immunocompetent mice were used to demonstrate the suppression of the in vivo growth of allograft Lewis lung carcinoma (LLC) cells, by HAD-B. In addition, HAD-B inhibited the in vitro growth of LLC cells by driving macrophages toward M1 polarization, but not through direct inhibition of tumor cell growth. Furthermore, culture media transfer of HAD-B-treated macrophages induced apoptosis of LLC cells. Results of the present study suggest that the antitumor effect of HAD-B may be explained by stimulating the antitumor function of macrophages. Considering the importance of re-educating TAMs in the regulation of the tumor microenvironment, the present study may confer another option for anti-cancer therapeutic strategy, using herbal medicines such as HAD-B.


Oncology Letters | 2018

Sorbus commixta water extract induces apoptotic cell death via a ROS‑dependent pathway

Seong‑Cheol Moon; Hee-Jung Choi; Tae Wook Chung; Jung Hee Lee; Syng-Ook Lee; Myeong Ho Jung; Byung Joo Kim; Jun‑Yong Choi; Ki Tae Ha

The stembark of Sorbus commixta Hedl. has been used for treating asthma, bronchitis, gastritis and edema. However, the anticancer and proapoptotic effects of the water extract of the stembark of S. commixta (SCE) remain unknown. In the present study, it was shown that SCE inhibited the cell viability of the hepatocellular carcinoma cell lines Hep3B and HepG2, and of the colon carcinoma cell line HCT116. DNA content analysis indicated that SCE increased the sub-G1 population of HCT116 cells. In addition, degradation of nuclear DNA and levels of proapoptotic cascade components, including caspase-9, caspase-3 and poly ADP-ribose polymerase, were augmented by SCE treatment. Mitochondrial membrane potential and the ratio of B-cell lymphoma-2 (Bcl-2)/Bcl-2-associated X protein (Bax) were also reduced. Furthermore, SCE increased the expression of proapoptotic proteins, including p21, p27 and p53. Mouse double minute 2 homology, a negative regulator of p53, was cleaved by SCE treatment. Intracellular reactive oxygen species (ROS) production was also increased by SCE treatment. However, the SCE-induced cytotoxic effects and the increased expression of proapoptotic proteins, including p53 and p21, and reduced Bcl-2/Bax ratio, could be attenuated by N-acetyl cysteine, an ROS inhibitor. Taken together, these results indicate that SCE is a potent proapoptotic herbal medicine, which exerts its effects via the ROS-mediated mitochondrial pathway.


Molecular Neurobiology | 2018

Therapeutic Potential of a Combination of Electroacupuncture and TrkB-Expressing Mesenchymal Stem Cells for Ischemic Stroke

Sung Min Ahn; Yu Ri Kim; Yong-Il Shin; Ki Tae Ha; Seo-Yeon Lee; Hwa Kyoung Shin; Byung Tae Choi

We prepared and grafted tropomyosin receptor kinase B (TrkB) gene-transfected mesenchymal stem cells (TrkB-MSCs) into the ischemic penumbra and investigated whether electroacupuncture (EA) treatment could promote functional recovery from ischemic stroke. For the behavioral test, TrkB-MSCs+EA resulted in significantly improved motor function compared to that obtained with MSCs+EA or TrkB-MSCs alone. At 30xa0days after middle cerebral artery occlusion (MCAO), the largest number of grafted MSCs was detected in the TrkB-MSC+EA group. Some differentiation into immature neuroblasts and astrocytes was detected; however, only a few mature neuron-like cells were found. Compared to other treatments, TrkB-MSCs+EA upregulated the expression of mature brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT4) and induced the activation of TrkB receptor and its transcription factor cAMP response element-binding protein (CREB). At 60xa0days after MCAO, EA highly promoted the differentiation of TrkB-MSCs into mature neuron-like cells compared to the effect in MSCs. A selective TrkB antagonist, ANA-12, reverted the effect of TrkB-MSCs+EA in motor function recovery and survival of grafted MSCs. Our results suggest that EA combined with grafted TrkB-MSCs promotes the expression of BDNF and NT4, induces the differentiation of TrkB-MSCs, and improves motor function. TrkB-MSCs could serve as effective therapeutic agents for ischemic stroke if used in combination with BDNF/NT4-inducing therapeutic approaches.


Molecular Medicine Reports | 2017

Scutellaria baicalensis Georgi induces caspase-dependent apoptosis via mitogen activated protein kinase activation and the generation of reactive oxygen species signaling pathways in MCF-7 breast cancer cells

Jin Ryeong Park; Min Cheol Lee; Seong‑Cheol Moon; Jung-Hoon Kim; Ki Tae Ha; Eun Jung Park; Chansik Hong; Byoung‑Do Seo; Byung Joo Kim

Scutellariaxa0baicalensis Georgi extract (SBGE) is used in traditional herbal medicine and has also been used clinically to ameliorate the symptoms of various inflammatory diseases and cancer. In women, breast cancer is one of the most common diseases and numerous women succumb to it. The present study was undertaken to investigate the mechanism responsible for the SBGE‑induced apoptosis of MCF‑7 human breast cancer cells. SBGE was administered to cells at concentrations between 100 and 500xa0mg/ml, and cell viabilities were identified using an MTT assay. B‑cell lymphoma 2 (Bcl-2) and Bcl-2 X‑associated protein (Bax) family members were identified by western blotting, and the mRNA expression levels of the pro‑apoptosis genes Fas, Fas ligand (FasL) and tumor necrosis factor (TNF)‑α were assessed by reverse transcription‑polymerase chain reaction. It was identified that SBGE treatment for 24xa0h inhibited MCF‑7 proliferation and increased the sub‑G1 phase ratio. SBGE suppressed mitochondrial membrane potentials and SBGE‑induced apoptotic cell death was identified to be associated with downregulation of Bcl‑2, but upregulation of Bax. SBGE‑activated caspases 3 and 9, and increased reactive oxygen species generation. However, SBGE had no effect on the expression levels of Fas, FasL or TNF‑α. Furthermore, mitogen‑activated protein kinase and C‑Jun N‑terminal kinase inhibitors inhibited SBGE‑induced cell death. These results suggested that SBGE be considered as an agent for the treatment of breast cancer.


Journal of Physiology & Pathology in Korean Medicine | 2016

Gallic Acid I nhibits STAT3 Phosphorylation and Alleviates DDS-induced Colitis via Regulating Cytokine Production

Ji Hyun Jeong; Eun Yeong Kim; Hee-Jung Choi; Tae Wook Chung; Keuk Jun Kim; So Yeon Kim; Ki Tae Ha

Signal transducer and activator of transcription 3 (STAT3) is associated with various human diseases, such as cancer, auto-immune disease, and intestinal inflammation. The limited and inadequate effect of standard approaches for treating inflammatory bowel disease (IBD) has prompted to develop alternative anti-colitis agents through inhibition of STAT3. Here, we show that gallic acid (GA), a 3,4,5-trihydroxybenzoic acid, markedly reduced phosphorylation of STAT3. Among the derivatives of benzoic acids, GA showed significant inhibition on STAT3 phosphorylation. In addition, GA ameliorated the dextran sodium sulfate (DSS)-induced acute colitis as determined by the measurement of symptomatic and histological indices. The suppression of DSS-induced acute colitis by GA treatment may be related to the regulation of cytokines and growth factors. Furthermore, GA inhibited phosphorylation of STAT3 in the colon tissue of DSS-treated mice. These findings may be useful in comprehending the molecular action of GA on STAT3 phosphorylation and provide novel insights into the potential application of GA in the treatment of STAT3-related inflammatory disease, such as IBD.

Collaboration


Dive into the Ki Tae Ha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hee-Jung Choi

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seok Jo Kim

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kwon Ho Song

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Un Ho Jin

Sungkyunkwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge