Kia N. Zellars
University of South Carolina
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kia N. Zellars.
Nature Materials | 2014
Brendan P. Purcell; David C Lobb; Manoj B. Charati; Shauna M. Dorsey; Ryan J. Wade; Kia N. Zellars; Heather Doviak; Sara Pettaway; Christina B. Logdon; James A Shuman; Parker D. Freels; Joseph H. Gorman; Robert C. Gorman; Francis G. Spinale; Jason A. Burdick
Inhibitors of matrix metalloproteinases (MMPs) have been extensively explored to treat pathologies where excessive MMP activity contributes to adverse tissue remodeling. While MMP inhibition remains a relevant therapeutic target, MMP inhibitors have not translated to clinical application due to the dose-limiting side effects following systemic administration of the drugs. Here, we describe the synthesis of a polysaccharide-based hydrogel that can be locally injected into tissues and releases a recombinant tissue inhibitor of MMPs (rTIMP-3) in response to MMP activity. Specifically, rTIMP-3 is sequestered in the hydrogels through electrostatic interactions and is released as crosslinks are degraded by active MMPs. Targeted delivery of the hydrogel/rTIMP-3 construct to regions of MMP over-expression following a myocardial infarction (MI) significantly reduced MMP activity and attenuated adverse left ventricular remodeling in a porcine model of MI. Our findings demonstrate that local, on-demand MMP inhibition is achievable through the use of an injectable and bioresponsive hydrogel.
Science Translational Medicine | 2014
Shaina R. Eckhouse; Brendan P. Purcell; Jeremy R. McGarvey; David C Lobb; Christina B. Logdon; Heather Doviak; Jason W. O’Neill; James A Shuman; Craig P Novack; Kia N. Zellars; Sara Pettaway; Roy A. Black; Aarif Y. Khakoo; TaeWeon Lee; Rupak Mukherjee; Joseph H. Gorman; Robert C. Gorman; Jason A. Burdick; Francis G. Spinale
Delivery of a hydrogel providing sustained release of recombinant TIMP-3 attenuated adverse ventricular remodeling after myocardial infarction in pigs. Hydrogel-Inhibitor Combo Stops Heart Damage After a heart attack, or myocardial infarction (MI), the heart tries to repair itself. This natural process is well intentioned but results in infarct expansion, scar formation, and, in turn, reduced heart function. To prevent such adverse remodeling, Eckhouse and colleagues designed an injectable hydrogel that inhibits the activity of enzymes directly involved in tissue repair. Matrix metalloproteinases (MMPs) are enzymes that are activated in heart tissue after MI. The authors encapsulated TIMP-3 (tissue inhibitor of metalloproteinase 3) in hyaluronic acid hydrogels. The gel/TIMP-3 combo or a control gel without the inhibitor was injected into the hearts of pigs after a heart attack. Weeks later, heart function, inflammation, and remodeling were evaluated. Animals administered the hydrogel with TIMP-3 had improved heart function [as determined by the left ventricular ejection fraction (LVEF)], improved LV geometry, and reduced infarct size. This local delivery mechanism could be used in the context of surgery, such as during coronary revascularization after a heart attack. Because it has been tested in pigs—which have similar heart anatomy to humans—and because other hydrogels, like alginate, have been tested in the human heart before, it is possible that this gel-inhibitor combination therapy could advance to clinical trials in the near future. An imbalance between matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) contributes to the left ventricle (LV) remodeling that occurs after myocardial infarction (MI). However, translation of these observations into a clinically relevant, therapeutic strategy remains to be established. The present study investigated targeted TIMP augmentation through regional injection of a degradable hyaluronic acid hydrogel containing recombinant TIMP-3 (rTIMP-3) in a large animal model. MI was induced in pigs by coronary ligation. Animals were then randomized to receive targeted hydrogel/rTIMP-3, hydrogel alone, or saline injection and followed for 14 days. Instrumented pigs with no MI induction served as referent controls. Multimodal imaging (fluoroscopy/echocardiography/magnetic resonance imaging) revealed that LV ejection fraction was improved, LV dilation was reduced, and MI expansion was attenuated in the animals treated with rTIMP-3 compared to all other controls. A marked reduction in proinflammatory cytokines and increased smooth muscle actin content indicative of myofibroblast proliferation occurred in the MI region with hydrogel/rTIMP-3 injections. These results provide the first proof of concept that regional sustained delivery of an MMP inhibitor can effectively interrupt adverse post-MI remodeling.
Journal of Pharmacology and Experimental Therapeutics | 2014
Jeremy R. McGarvey; Sara Pettaway; James A Shuman; Craig P Novack; Kia N. Zellars; Parker D. Freels; Randall L. Echols; Jason A. Burdick; Joseph H. Gorman; Robert C. Gorman; Francis G. Spinale
A treatment target for progressive left ventricular (LV) remodeling prevention following myocardial infarction (MI) is to affect structural changes directly within the MI region. One approach is through targeted injection of biocomposite materials, such as calcium hydroxyapatite microspheres (CHAM), into the MI region. In this study, the effects of CHAM injections upon key cell types responsible for the MI remodeling process, the macrophage and fibroblast, were examined. MI was induced in adult pigs before randomization to CHAM injections (20 targeted 0.1-ml injections within MI region) or saline. At 7 or 21 days post-MI (n = 6/time point per group), cardiac magnetic resonance imaging was performed, followed by macrophage and fibroblast isolation. Isolated macrophage profiles for monocyte chemotactic macrophage inflammatory protein-1 as measured by real-time polymerase chain reaction increased at 7 days post-MI in the CHAM group compared with MI only (16.3 ± 6.6 versus 1.7 ± 0.6 cycle times values, P < 0.05), and were similar by 21 days post-MI. Temporal changes in fibroblast function and smooth muscle actin (SMA) expression relative to referent control (n = 5) occurred with MI. CHAM induced increases in fibroblast proliferation, migration, and SMA expression—indicative of fibroblast transformation. By 21 days, CHAM reduced LV dilation (diastolic volume: 75 ± 2 versus 97 ± 4 ml) and increased function (ejection fraction: 48 ± 2% versus 38 ± 2%) compared with MI only (both P < 0.05). This study identified that effects on macrophage and fibroblast differentiation occurred with injection of biocomposite material within the MI, which translated into reduced adverse LV remodeling. These unique findings demonstrate that biomaterial injections impart biologic effects upon the MI remodeling process over any biophysical effects.
American Journal of Physiology-heart and Circulatory Physiology | 2017
Shayne C. Barlow; Heather Doviak; Julia Jacobs; Lisa A. Freeburg; Paige E. Perreault; Kia N. Zellars; Karen Moreau; Camila F. Villacreses; Stephen Smith; Aarif Y. Khakoo; TaeWeon Lee; Francis G. Spinale
Ischemia-reperfusion (IR) and myocardial infarction (MI) cause adverse left ventricular (LV) remodeling and heart failure and are facilitated by an imbalance in matrix metalloproteinase (MMP) activation and the endogenous tissue inhibitors of metalloproteinase (TIMPs). We have identified that myocardial injections of recombinant TIMP-3 (rTIMP-3; human full length) can interrupt post-MI remodeling. However, whether and to what degree intracoronary delivery of rTIMP-3 post-IR is feasible and effective remained to be established. Pigs (25 kg) underwent coronary catheterization and balloon occlusion of the left anterior descending coronary artery (LAD) for 90 min whereby at the final 4 min, rTIMP-3 (30 mg, n = 9) or saline was infused in the distal LAD. LV echocardiography was performed at 3-28 days post-IR, and LV ejection fraction (EF) and LV end-diastolic volume were measured. LV EF fell and LV end-diastolic volume increased from baseline (pre-IR) values (66 ± 1% and 40 ± 1 ml, respectively, means ± standard deviation) in both groups; however, the extent of LV dilation was reduced in the rTIMP-3 group by 40% at 28 days post-IR (P < 0.05) and the fall in LV EF was attenuated. Despite equivalent plasma troponin levels (14 ± 3 ng/ml), computed MI size at 28 days was reduced by over 45% in the rTIMP-3 group (P < 0.05), indicating that rTIMP-3 treatment abrogated MI expansion post-IR. Plasma NH2-terminal pro-brain natriuretic peptide levels, an index of heart failure progression, were reduced by 25% in the rTIMP-3 group compared with MI saline values (P < 0.05). Although the imbalance between MMPs and TIMPs has been recognized as a contributory factor for post-MI remodeling, therapeutic strategies targeting this imbalance have not been forthcoming. This study is the first to demonstrate that a relevant delivery approach (intracoronary) using rTIMP can alter the course of post-MI remodeling.NEW & NOTEWORTHY Myocardial ischemia and reperfusion injury remain significant causes of morbidity and mortality whereby alterations in the balance between matrix metalloproteinase and tissue inhibitor of metalloproteinase have been identified as contributory biological mechanisms. This novel translational study advances the concept of targeted delivery of recombinant proteins to modify adverse myocardial remodeling in ischemia-reperfusion injury.
American Journal of Physiology-heart and Circulatory Physiology | 2014
William M. Yarbrough; Catalin F. Baicu; Rupak Mukherjee; An O. Van Laer; William T Rivers; Richard A McKinney; Corey B Prescott; Robert E. Stroud; Parker D. Freels; Kia N. Zellars; Michael R. Zile; Francis G. Spinale
Historically, the tissue inhibitors of matrix metalloproteinases (TIMPs) were considered monochromatic in function. However, differential TIMP profiles more recently observed with left ventricular (LV) dysfunction and matrix remodeling suggest more diverse biological roles for individual TIMPs. This study tested the hypothesis that cardiac-specific overexpression (TIMP-4OE) or deletion (knockout; TIMP-4KO) would differentially affect LV function and structure following pressure overload (LVPO). LVPO (transverse aortic constriction) was induced in mice (3.5 ± 0.1 mo of age, equal sex distribution) with TIMP-4OE (n = 38), TIMP-4KO (n = 24), as well as age/strain-matched wild type (WT, n = 25), whereby indexes of LV remodeling and function such as LV mass and ejection fraction (LVEF) were determined at 28 days following LVPO. Following LVPO, both early (7 days) and late (28 days) survival was ~25% lower in the TIMP-4KO group (P < 0.05). While LVPO increased LV mass in all groups, the relative hypertrophic response was attenuated with TIMP-4OE. With LVPO, LVEF was similar between WT and TIMP-4KO (48 ± 2% and 45 ± 3%, respectively) but was higher with TIMP-4OE (57 ± 2%, P < 0.05). With LVPO, LV myocardial collagen expression (type I, III) increased by threefold in all groups (P < 0.05), but surprisingly this response was most robust in the TIMP-4KO group. These unique findings suggest that increased myocardial TIMP-4 in the context of a LVPO stimulus may actually provide protective effects with respect to survival, LV function, and extracellular matrix (ECM) remodeling. These findings challenge the canonical belief that increased levels of specific myocardial TIMPs, such as TIMP-4 in and of themselves, contribute to adverse ECM accumulation following a pathological stimulus, such as LVPO.
American Journal of Physiology-heart and Circulatory Physiology | 2018
Kelsie E. Oatmen; Olga Toro-Salazar; Kristine Hauser; Kia N. Zellars; Kathryn C. Mason; Kan Hor; Eileen Gillan; Caroline J. Zeiss; Daniel M. Gatti; Francis G. Spinale
Anthracycline chemotherapy (AC) is associated with decline in left ventricular ejection fraction (LVEF), yet the mechanisms remain unclear. Although changes in microRNAs (miRs) have been identified in adult cardiovascular disease, miR profiles in pediatric patients with AC have not been well studied. The goal of this study was to examine miR profiles (unbiased array) in pediatric patients with AC compared with age-matched referent normal patients. We hypothesize that pediatric patients with AC will express a unique miR profile at the initiation and completion of therapy and will be related to LVEF. Serum was collected in pediatric patients (10-22 yr, n = 12) with newly diagnosed malignancy requiring AC within 24-48 h after the initiation of therapy (30-60 mg/m2) and ~1 yr after completing therapy. A custom microarray of 84 miRs associated with cardiovascular disease was used (quantitative RT-PCR) and indexed to referent normal profiles (13-17 yr, n = 17). LVEF was computed by cardiac MRI. LVEF fell from AC initiation at ~1 yr after AC completion (64.28 ± 1.78% vs. 57.53 ± 0.95%, respectively, P = 0.004). Of the 84 miRs profiled, significant shifts in 17 miRs occurred relative to referent normal ( P ≤ 0.05). Moreover, the functional domain of miRs associated with myocardial differentiation and development fell over threefold at the completion of AC ( P ≤ 0.05). Moreover, eight miRs were significantly downregulated after AC completion in those patients with the greatest decline in LVEF (≥10%, P < 0.05). This study demonstrates, for the first time, that changes in miR expression occur in pediatric patients with AC. These findings suggest that miRs are a potential strategy for the early identification of patients with AC susceptible to left ventricular dysfunction. NEW & NOTEWORTHY Although anthracycline chemotherapy (AC) is effective for a number of pediatric cancers, an all too often consequence of AC is the development of left ventricular failure. The present study identified that specific shifts in the pattern of microRNAs, which regulate myocardial growth, function, and viability, occurred during and after AC in pediatric patients, whereby the magnitude of this shift was associated with the degree of left ventricular failure.
American Journal of Physiology-heart and Circulatory Physiology | 2018
Brendan P. Purcell; Shayne C. Barlow; Paige E. Perreault; Lisa A. Freeburg; Heather Doviak; Julia Jacobs; Abigail Hoenes; Kia N. Zellars; Aarif Y. Khakoo; TaeWeon Lee; Jason A. Burdick; Francis G. Spinale
Although improvements in timing and approach for early reperfusion with acute coronary syndromes have occurred, myocardial injury culminating in a myocardial infarction (MI) remains a common event. Although a multifactorial process, an imbalance between the induction of proteolytic pathways, such as matrix metalloproteinases (MMPs) and endogenous tissue inhibitors of metalloproteinase (TIMPs), has been shown to contribute to this process. In the present study, a full-length TIMP-3 recombinant protein (rTIMP-3) was encapsulated in a specifically formulated hyaluronic acid (HA)-based hydrogel that contained MMP-cleavable peptide cross-links, which influenced the rate of rTIMP-3 release from the HA gel. The effects of localized delivery of this MMP-sensitive HA gel (HAMMPS) alone and containing rTIMP-3 (HAMMPS/rTIMP-3) were examined in terms of the natural history of post-MI remodeling. Pigs were randomized to one of the following three different groups: MI and saline injection (MI/saline group, 100-μl injection at nine injection sites, n = 7), MI and HAMMPS injection (MI/HAMMPS group; 100-μl injection at nine injection sites, n = 7), and MI and HAMMPS/rTIMP-3 injection (MI/HAMMPS/rTIMP-3 group; 20-μg/100-μl injection at nine injection sites, n = 7). Left ventricular (LV) echocardiography was serially performed up to 28 days post-MI. LV dilation, as measured by end-diastolic volume, and the degree of MI wall thinning were reduced by ~50% in the HAMMPS/rTIMP-3 group ( P < 0.05). Furthermore, indexes of heart failure progression post-MI, such as LV filling pressures and left atrial size, were also attenuated to the greatest degree in the HAMMPS/rTIMP-3 group. At 28 days post-MI, HAMMPS/rTIMP-3 caused a relative reduction in the transcriptional profile for myofibroblasts as well as profibrotic pathways, which was confirmed by subsequent histochemistry. In conclusion, these findings suggest that localized delivery of a MMP-sensitive biomaterial that releases a recombinant TIMP holds promise as a means to interrupt adverse post-MI remodeling. NEW & NOTEWORTHY The present study targeted a myocardial matrix proteolytic system, matrix metalloproteinases (MMPs), through the use of a recombinant tissue inhibitor of MMPs incorporated into a MMP-sensitive hydrogel, which was regionally injected using a large animal model of myocardial infarction. Left ventricular geometry and function and indexes of myocardial remodeling were improved with this approach and support the advancement of localized therapeutic strategies that specifically target the myocardial matrix.
Journal of Cardiac Failure | 2018
Bryan Young; Kelsie E. Oatmen; Lisa A. Freeburg; Kia N. Zellars; Ashley A. Sapp; Erica Herzog; Edward J. Miller; Francis G. Spinale
Journal of Cardiac Failure | 2018
Kelsie E. Oatmen; Olga Toro-Salazar; Kia N. Zellars; Kathryn C. Mason; Ashley A. Sapp; Kan Hor; Eileen Gillan; Caroline J. Zeiss; Daniel M. Gatti; Brooke T. Davey; Bruce T. Liang; Francis G. Spinale
Cardio-Oncology | 2018
Olga H. Toro-Salazar; Ji Hyun Lee; Kia N. Zellars; Paige E. Perreault; Kathryn C. Mason; Zhu Wang; Kan N. Hor; Eileen Gillan; Caroline J. Zeiss; Daniel M. Gatti; Brooke T. Davey; Shelby Kutty; Bruce T. Liang; Francis G. Spinale