Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kian Kai Cheng is active.

Publication


Featured researches published by Kian Kai Cheng.


Circulation Research | 2010

DNA Damage Links Mitochondrial Dysfunction to Atherosclerosis and the Metabolic Syndrome

John Mercer; Kian Kai Cheng; Nichola Figg; Isabelle Gorenne; Melli Mahmoudi; Julian L. Griffin; Antonio Vidal-Puig; Angela Logan; Michael P. Murphy; Martin R. Bennett

Rationale: DNA damage is present in both genomic and mitochondrial DNA in atherosclerosis. However, whether DNA damage itself promotes atherosclerosis, or is simply a byproduct of the risk factors that promote atherosclerosis, is unknown. Objective: To examine the effect of DNA damage on atherosclerosis, we studied apolipoprotein (Apo)E−/− mice that were haploinsufficient for the protein kinase ATM (ataxia telangiectasia mutated), which coordinates DNA repair. Methods and Results: ATM+/−/ApoE−/− mice developed accelerated atherosclerosis and multiple features of the metabolic syndrome, including hypertension, hypercholesterolemia, obesity, steatohepatitis, and glucose intolerance. Transplantation with ATM+/+ bone marrow attenuated atherosclerosis but not the metabolic syndrome. ATM+/− smooth muscle cells and macrophages showed increased nuclear DNA damage and defective DNA repair signaling, growth arrest, and apoptosis. Metabolomic screening of ATM+/−/ApoE−/− mouse tissues identified metabolic changes compatible with mitochondrial defects, with increased &bgr;-hydroxybutyrate but reduced lactate, reduced glucose, and alterations in multiple lipid species. ATM+/−/ApoE−/− mouse tissues showed an increased frequency of a mouse mitochondrial “common” deletion equivalent and reduced mitochondrial oxidative phosphorylation. Conclusions: We propose that failure of DNA repair generates defects in cell proliferation, apoptosis, and mitochondrial dysfunction. This in turn leads to ketosis, hyperlipidemia, and increased fat storage, promoting atherosclerosis and the metabolic syndrome. Prevention of mitochondrial dysfunction may represent a novel target in cardiovascular disease.


Free Radical Biology and Medicine | 2012

The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/–/ApoE–/– mice

John Mercer; Emma Yu; Nichola Figg; Kian Kai Cheng; Tracy A. Prime; Julian L. Griffin; Mojgan Masoodi; Antonio Vidal-Puig; Michael P. Murphy; Martin R. Bennett

A number of recent studies suggest that mitochondrial oxidative damage may be associated with atherosclerosis and the metabolic syndrome. However, much of the evidence linking mitochondrial oxidative damage and excess reactive oxygen species (ROS) with these pathologies is circumstantial. Consequently the importance of mitochondrial ROS in the etiology of these disorders is unclear. Furthermore, the potential of decreasing mitochondrial ROS as a therapy for these indications is not known. We assessed the impact of decreasing mitochondrial oxidative damage and ROS with the mitochondria-targeted antioxidant MitoQ in models of atherosclerosis and the metabolic syndrome (fat-fed ApoE(-/-) mice and ATM(+/-)/ApoE(-/-) mice, which are also haploinsufficient for the protein kinase, ataxia telangiectasia mutated (ATM). MitoQ administered orally for 14weeks prevented the increased adiposity, hypercholesterolemia, and hypertriglyceridemia associated with the metabolic syndrome. MitoQ also corrected hyperglycemia and hepatic steatosis, induced changes in multiple metabolically relevant lipid species, and decreased DNA oxidative damage (8-oxo-G) in multiple organs. Although MitoQ did not affect overall atherosclerotic plaque area in fat-fed ATM(+/+)/ApoE(-/-) and ATM(+/-)/ApoE(-/-) mice, MitoQ reduced the macrophage content and cell proliferation within plaques and 8-oxo-G. MitoQ also significantly reduced mtDNA oxidative damage in the liver. Our data suggest that MitoQ inhibits the development of multiple features of the metabolic syndrome in these mice by affecting redox signaling pathways that depend on mitochondrial ROS such as hydrogen peroxide. These findings strengthen the growing view that elevated mitochondrial ROS contributes to the etiology of the metabolic syndrome and suggest a potential therapeutic role for mitochondria-targeted antioxidants.


Molecular Systems Biology | 2009

Metabolomics of the interaction between PPAR-α and age in the PPAR-α-null mouse

Helen J. Atherton; Melanie K. Gulston; Nigel J. Bailey; Kian Kai Cheng; Wen Zhang; Kieran Clarke; Julian L. Griffin

Regulation between the fed and fasted states in mammals is partially controlled by peroxisome proliferator‐activated receptor‐α (PPAR‐α). Expression of the receptor is high in the liver, heart and skeletal muscle, but decreases with age. A combined 1H nuclear magnetic resonance (NMR) spectroscopy and gas chromatography‐mass spectrometry metabolomic approach has been used to examine metabolism in the liver, heart, skeletal muscle and adipose tissue in PPAR‐α‐null mice and wild‐type controls during ageing between 3 and 13 months. For the PPAR‐α‐null mouse, multivariate statistics highlighted hepatic steatosis, reductions in the concentrations of glucose and glycogen in both the liver and muscle tissue, and profound changes in lipid metabolism in each tissue, reflecting known expression targets of the PPAR‐α receptor. Hepatic glycogen and glucose also decreased with age for both genotypes. These findings indicate the development of age‐related hepatic steatosis in the PPAR‐α‐null mouse, with the normal metabolic changes associated with ageing exacerbating changes associated with genotype. Furthermore, the combined metabolomic and multivariate statistics approach provides a robust method for examining the interaction between age and genotype.


Molecular BioSystems | 2012

Targeted metabolomics identifies perturbations in amino acid metabolism that sub-classify patients with COPD

Baljit K. Ubhi; Kian Kai Cheng; Jiyang Dong; Tobias Janowitz; Duncan I. Jodrell; Ruth Tal-Singer; William MacNee; David A. Lomas; John H. Riley; Julian L. Griffin; Susan C. Connor

BACKGROUND COPD, a leading cause of mortality is currently assessed by spirometry (forced expiratory volume in 1 second, FEV(1)). However FEV(1) does not correlate with patient mortality. ECLIPSE (Evaluation of Chronic obstructive pulmonary disease to Longitudinally Identify Predictive Surrogate Endpoints) aims to identify biomarkers that correlate with clinically relevant COPD subtypes, and to assess how these may predict disease progression. New methods were developed and validated to evaluate small molecules as potential diagnostic tools in patients with COPD, COPD related cachexia and cancer related cachexia. METHODS AND FINDINGS quantitative LC-MS/MS was developed to measure 34 amino acids and dipeptides for stratification of patient groups. Subsets of the ECLIPSE patients were used to assess biomarkers of lung obstruction; GOLD IV (n = 30) versus control (n = 30); emphysema (n = 38) versus airways disease (n = 21) and cachexia (n = 30) versus normal body mass index (n = 30). Serum from cachexic (n = 7) and non-cachexic (n = 5) pancreatic cancer patients were included as controls. Targeted LC-MS/MS distinguished GOLD IV patients from controls, patients with and without emphysema and patients with and without cachexia. Glutamine, aspartate and arginine were significantly increased (p < 0.05; FDR adjustment α < 0.1) in cachexia, emphysema and GOLD IV patients and aminoadipate was decreased. Several amino acid concentrations were significantly altered in patients with COPD but not patients with pancreatic cancer (serine, sarcosine, tryptophan, BCAAs and 3-methylhistdine). Increased γ-aminobutyrate (GABA, p < 0.01) levels were specific to cachexia in patients with pancreatic cancer. β-aminoisobutyrate, 1-methylhistidine and asparagine (p < 0.05) were common across the patients with cachexia from both the COPD and pancreatic cancer cohorts. CONCLUSION these results demonstrate that a metabolomic fingerprint has potential to stratify patients for the treatment of COPD and may provide a means of assessing response to therapy. GOLD IV patients were distinguished from smoker control subjects, patients with emphysema were distinguished from those without emphysema and COPD patients displaying cachexia were distinguished from those not displaying cachexia. General markers of cachexia were discovered reflecting both COPD- and pancreatic cancer-related cachexia (increased glutamine, aspartate, arginine, and asparagine and decreased aminoadipate, β-aminoisobutyrate and 1-methylhistidine). Metabolomic biomarkers, particularly altered levels of GABA, could be exploited as a way of monitoring treatment efficacy and tumour recurrence for patients with pancreatic cancer experiencing cachexia.


Nature Communications | 2014

Global metabolic network reorganization by adaptive mutations allows fast growth of Escherichia coli on glycerol

Kian Kai Cheng; Baek Seok Lee; Takeshi Masuda; Takuro Ito; Kazutaka Ikeda; Akiyoshi Hirayama; Lingli Deng; Jiyang Dong; Kazuyuki Shimizu; Tomoyoshi Soga; Masaru Tomita; Bernhard O. Palsson; Martin Robert

Comparative whole-genome sequencing enables the identification of specific mutations during adaptation of bacteria to new environments and allelic replacement can establish their causality. However, the mechanisms of action are hard to decipher and little has been achieved for epistatic mutations, especially at the metabolic level. Here we show that a strain of Escherichia coli carrying mutations in the rpoC and glpK genes, derived from adaptation in glycerol, uses two distinct metabolic strategies to gain growth advantage. A 27-bp deletion in the rpoC gene first increases metabolic efficiency. Then, a point mutation in the glpK gene promotes growth by improving glycerol utilization but results in increased carbon wasting as overflow metabolism. In a strain carrying both mutations, these contrasting carbon/energy saving and wasting mechanisms work together to give an 89% increase in growth rate. This study provides insight into metabolic reprogramming during adaptive laboratory evolution for fast cellular growth.


Physiological Genomics | 2010

Metabolomic study of the LDL receptor null mouse fed a high-fat diet reveals profound perturbations in choline metabolism that are shared with ApoE null mice

Kian Kai Cheng; G. Martin Benson; David C. Grimsditch; David G. Reid; Susan C. Connor; Julian L. Griffin

Failure to express or expression of dysfunctional low-density lipoprotein receptors (LDLR) causes familial hypercholesterolemia in humans, a disease characterized by elevated blood cholesterol concentrations, xanthomas, and coronary heart disease, providing compelling evidence that high blood cholesterol concentrations cause atherosclerosis. In this study, we used (1)H nuclear magnetic resonance spectroscopy to examine the metabolic profiles of plasma and urine from the LDLR knockout mice. Consistent with previous studies, these mice developed hypercholesterolemia and atherosclerosis when fed a high-fat/cholesterol/cholate-containing diet. In addition, multivariate statistical analysis of the metabolomic data highlighted significant differences in tricarboxylic acid cycle and fatty acid metabolism, as a result of high-fat/cholesterol diet feeding. Our metabolomic study also demonstrates that the effect of high-fat/cholesterol/cholate diet, LDLR gene deficiency, and the diet-genotype interaction caused a significant perturbation in choline metabolism, notably the choline oxidation pathway. Specifically, the loss in the LDLR caused a marked reduction in the urinary excretion of betaine and dimethylglycine, especially when the mice are fed a high-fat/cholesterol/cholate diet. Furthermore, as we demonstrate that these metabolic changes are comparable with those detected in ApoE knockout mice fed the same high-fat/cholesterol/cholate diet they may be useful for monitoring the onset of atherosclerosis across animal models.


Diabetes-metabolism Research and Reviews | 2015

Mitochondrial dysfunction as a central event for mechanisms underlying insulin resistance

Mohamad Abu Bakar; Kian Kai Cheng; Wan Najihah Wan Hassan; Mohamad Roji Sarmidi; Harisun Yaakob; Hasniza Zaman Huri

Insulin resistance is characterized by hyperglycaemia, dyslipidaemia and oxidative stress prior to the development of type 2 diabetes mellitus. To date, a number of mechanisms have been proposed to link these syndromes together, but it remains unclear what the unifying condition that triggered these events in the progression of this metabolic disease. There have been a steady accumulation of data in numerous experimental studies showing the strong correlations between mitochondrial dysfunction, oxidative stress and insulin resistance. In addition, a growing number of studies suggest that the raised plasma free fatty acid level induced insulin resistance with the significant alteration of oxidative metabolism in various target tissues such as skeletal muscle, liver and adipose tissue. In this review, we herein propose the idea of long chain fatty acid‐induced mitochondrial dysfunctions as one of the key events in the pathophysiological development of insulin resistance and type 2 diabetes. The accumulation of reactive oxygen species, lipotoxicity, inflammation‐induced endoplasmic reticulum stress and alterations of mitochondrial gene subset expressions are the most detrimental that lead to the developments of aberrant intracellular insulin signalling activity in a number of peripheral tissues, thereby leading to insulin resistance and type 2 diabetes. Copyright


Scientific Reports | 2016

The Influence of OLR1 and PCSK9 Gene Polymorphisms on Ischemic Stroke: Evidence from a Meta-Analysis.

Anthony Au; Lyn R. Griffiths; Kian Kai Cheng; Cheah Wee Kooi; Looi Irene; Loo Keat Wei

Both OLR1 and PCSK9 genes are associated with atherosclerosis, cardiovascular disease and ischemic stroke. The overall prevalence of PCSK9 rs505151 and OLR1 rs11053646 variants in ischemic stroke were 0.005 and 0.116, respectively. However, to date, association between these polymorphisms and ischemic stroke remains inconclusive. Therefore, this first meta-analysis was carried out to clarify the presumed influence of these polymorphisms on ischemic stroke. All eligible case-control and cohort studies that met the search terms were retrieved in multiple databases. Demographic and genotyping data were extracted from each study, and the meta-analysis was performed using RevMan 5.3 and Metafor R 3.2.1. The pooled odd ratios (ORs) and 95% confidence intervals (CIs) were calculated using both fixed- and random-effect models. Seven case-control studies encompassing 1897 cases and 2119 controls were critically evaluated. Pooled results from the genetic models indicated that OLR1 rs11053646 dominant (OR = 1.33, 95%  CI:1.11–1.58) and co-dominant models (OR = 1.24, 95%  CI:1.02–1.51) were significantly associated with ischemic stroke. For the PCSK9 rs505151 polymorphism, the OR of co-dominant model (OR = 1.36, 95%  CI:1.01–1.58) was found to be higher among ischemic stroke patients. In conclusion, the current meta-analysis highlighted that variant allele of OLR1 rs11053646 G > C and PCSK9 rs505151 A > G may contribute to the susceptibility risk of ischemic stroke.


Methods in Enzymology | 2011

The study of mammalian metabolism through NMR-based metabolomics

Reza M. Salek; Kian Kai Cheng; Julian L. Griffin

High-resolution NMR spectroscopy has been widely used to monitor metabolism almost since the techniques development. It is now one of the principle technologies used in metabolomics, to profile the metabolite compliment of a cell, tissue, organism, or biofluid. This chapter describes how tissue extracts are prepared for NMR spectroscopy and, in particular, focuses on two approaches based on perchloric acid and methanol/chloroform extractions. This is followed by a description of key NMR experiments that can be used to profile tissue extracts, biofluids, or intact tissues. While these NMR techniques should be optimized for a particular sample set, we provide some tried and tested starting parameters for these experiments which should allow the user to acquire good quality spectra.


Molecules | 2015

Celastrol protects against antimycin A-induced insulin resistance in human skeletal muscle cells

Mohamad Abu Bakar; Kian Kai Cheng; Mohamad Roji Sarmidi; Harisun Yaakob; Hasniza Zaman Huri

Mitochondrial dysfunction and inflammation are widely accepted as key hallmarks of obesity-induced skeletal muscle insulin resistance. The aim of the present study was to evaluate the functional roles of an anti-inflammatory compound, celastrol, in mitochondrial dysfunction and insulin resistance induced by antimycin A (AMA) in human skeletal muscle cells. We found that celastrol treatment improved insulin-stimulated glucose uptake activity of AMA-treated cells, apparently via PI3K/Akt pathways, with significant enhancement of mitochondrial activities. Furthermore, celastrol prevented increased levels of cellular oxidative damage where the production of several pro-inflammatory cytokines in cultures cells was greatly reduced. Celastrol significantly increased protein phosphorylation of insulin signaling cascades with amplified expression of AMPK protein and attenuated NF-κB and PKC θ activation in human skeletal muscle treated with AMA. The improvement of insulin signaling pathways by celastrol was also accompanied by augmented GLUT4 protein expression. Taken together, these results suggest that celastrol may be advocated for use as a potential therapeutic molecule to protect against mitochondrial dysfunction-induced insulin resistance in human skeletal muscle cells.

Collaboration


Dive into the Kian Kai Cheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohamad Roji Sarmidi

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harisun Yaakob

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge