Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiavash Movahedi is active.

Publication


Featured researches published by Kiavash Movahedi.


Blood | 2008

Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell–suppressive activity

Kiavash Movahedi; Martin Guilliams; Jan Van den Bossche; Rafael Van den Bergh; Conny Gysemans; Alain Beschin; Patrick De Baetselier; Jo A. Van Ginderachter

The induction of CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs) is an important immune-evading mechanism used by tumors. However, the exact nature and function of MDSCs remain elusive, especially because they constitute a heterogeneous population that has not yet been clearly defined. Here, we identified 2 distinct MDSC subfractions with clear morphologic, molecular, and functional differences. These fractions consisted of either mononuclear cells (MO-MDSCs), resembling inflammatory monocytes, or low-density polymorphonuclear cells (PMN-MDSCs), akin to immature neutrophils. Interestingly, both MO-MDSCs and PMN-MDSCs suppressed antigen-specific T-cell responses, albeit using distinct effector molecules and signaling pathways. Blocking IFN-gamma or disrupting STAT1 partially impaired suppression by MO-MDSCs, for which nitric oxide (NO) was one of the mediators. In contrast, while IFN-gamma was strictly required for the suppressor function of PMN-MDSCs, this did not rely on STAT1 signaling or NO production. Finally, MO-MDSCs were shown to be potential precursors of highly antiproliferative NO-producing mature macrophages. However, distinct tumors differentially regulated this inherent MO-MDSC differentiation program, indicating that this phenomenon was tumor driven. Overall, our data refine tumor-induced MDSC functions by uncovering mechanistically distinct MDSC subpopulations, potentially relevant for MDSC-targeted therapies.


Cancer Research | 2014

Tumor Hypoxia Does Not Drive Differentiation of Tumor-Associated Macrophages but Rather Fine-Tunes the M2-like Macrophage Population

Damya Laoui; Eva Van Overmeire; Giusy Di Conza; Chiara Aldeni; Jiri Keirsse; Yannick Morias; Kiavash Movahedi; Isabelle Houbracken; Elio Schouppe; Yvon Elkrim; Oussama Karroum; Bénédicte F. Jordan; Peter Carmeliet; Conny Gysemans; Patrick De Baetselier; Massimiliano Mazzone; Jo A. Van Ginderachter

Tumor-associated macrophages (TAM) are exposed to multiple microenvironmental cues in tumors, which collaborate to endow these cells with protumoral activities. Hypoxia, caused by an imbalance in oxygen supply and demand because of a poorly organized vasculature, is often a prominent feature in solid tumors. However, to what extent tumor hypoxia regulates the TAM phenotype in vivo is unknown. Here, we show that the myeloid infiltrate in mouse lung carcinoma tumors encompasses two morphologically distinct CD11b(hi)F4/80(hi)Ly6C(lo) TAM subsets, designated as MHC-II(lo) and MHC-II(hi) TAM, both of which were derived from tumor-infiltrating Ly6C(hi) monocytes. MHC-II(lo) TAM express higher levels of prototypical M2 markers and reside in more hypoxic regions. Consequently, MHC-II(lo) TAM contain higher mRNA levels for hypoxia-regulated genes than their MHC-II(hi) counterparts. To assess the in vivo role of hypoxia on these TAM features, cancer cells were inoculated in prolyl hydroxylase domain 2 (PHD2)-haplodeficient mice, resulting in better-oxygenated tumors. Interestingly, reduced tumor hypoxia did not alter the relative abundance of TAM subsets nor their M2 marker expression, but specifically lowered hypoxia-sensitive gene expression and angiogenic activity in the MHC-II(lo) TAM subset. The same observation in PHD2(+/+) → PHD2(+/-) bone marrow chimeras also suggests organization of a better-oxygenized microenvironment. Together, our results show that hypoxia is not a major driver of TAM subset differentiation, but rather specifically fine-tunes the phenotype of M2-like MHC-II(lo) TAM.


Cancer Research | 2012

Nanobody-Based Targeting of the Macrophage Mannose Receptor for Effective In Vivo Imaging of Tumor-Associated Macrophages

Kiavash Movahedi; Steve Schoonooghe; Damya Laoui; Isabelle Houbracken; Wim Waelput; Karine Breckpot; Luc Bouwens; Tony Lahoutte; Patrick De Baetselier; Geert Raes; Nick Devoogdt; Jo A. Van Ginderachter

Tumor-associated macrophages (TAM) are an important component of the tumor stroma and exert several tumor-promoting activities. Strongly pro-angiogenic TAMs that reside in hypoxic tumor areas highly express macrophage mannose receptor (MMR, CD206). In this study, we targeted MMR+ TAMs using nanobodies, which are single-domain antigen-binding fragments derived from Camelidae heavy-chain antibodies. MMR-specific nanobodies stained TAMs in lung and breast tumor single-cell suspensions in vitro, and intravenous injection of 99mTc-labeled anti-MMR nanobodies successfully targeted tumor in vivo. Retention of the nanobody was receptor-specific and absent in MMR-deficient mice. Importantly, co-injection of excess unlabeled, bivalent anti-MMR nanobodies reduced nanobody accumulation in extratumoral organs to background levels, without compromising tumor uptake. Within tumors, the 99mTc-labeled nanobodies specifically labeled MMR+ TAMs, as CCR2-deficient mice that contain fewer TAMs showed significantly reduced tumor uptake. Further, anti-MMR nanobodies accumulated in hypoxic regions, thus targeting pro-angiogenic MMR+ TAMs. Taken together, our findings provide preclinical proof of concept that anti-MMR nanobodies can be used to selectively target and image TAM subpopulations in vivo.


Journal of Immunology | 2009

IL-10 Dampens TNF/Inducible Nitric Oxide Synthase-Producing Dendritic Cell-Mediated Pathogenicity during Parasitic Infection

Martin Guilliams; Kiavash Movahedi; Tom Bosschaerts; Thierry Vandendriessche; Marinee Khim Chuah; Michel Hérin; Abel Acosta-Sanchez; L Ma; Muriel Moser; Jo A. Van Ginderachter; Lea Brys; Patrick De Baetselier; Alain Beschin

Antiparasite responses are associated with the recruitment of monocytes that differentiate to macrophages and dendritic cells at the site of infection. Although classically activated monocytic cells are assumed to be the major source of TNF and NO during Trypanosoma brucei brucei infection, their cellular origin remains unclear. In this study, we show that bone marrow-derived monocytes accumulate and differentiate to TNF/inducible NO synthase-producing dendritic cells (TIP-DCs) in the spleen, liver, and lymph nodes of T. brucei brucei-infected mice. Although TIP-DCs have been shown to play a beneficial role in the elimination of several intracellular pathogens, we report that TIP-DCs, as a major source of TNF and NO in inflamed organs, could contribute actively to tissue damage during the chronic stage of T. brucei brucei infection. In addition, the absence of IL-10 leads to enhanced differentiation of monocytes to TIP-DCs, resulting in exacerbated pathogenicity and early death of the host. Finally, we demonstrate that sustained production of IL-10 following IL-10 gene delivery treatment with an adeno-associated viral vector to chronically infected mice limits the differentiation of monocytes to TIP-DCs and protects the host from tissue damage.


Immunobiology | 2011

Mononuclear phagocyte heterogeneity in cancer: Different subsets and activation states reaching out at the tumor site

Damya Laoui; Eva Van Overmeire; Kiavash Movahedi; Jan Van den Bossche; Elio Schouppe; Camille Mommer; Alexandros Nikolaou; Yannick Morias; Patrick De Baetselier; Jo A. Van Ginderachter

Mononuclear phagocytes are amongst the most versatile cells of the body, contributing to tissue genesis and homeostasis and safeguarding the balance between pro- and anti-inflammatory reactions. Accordingly, these cells are notoriously heterogeneous, functioning in distinct differentiation forms (monocytes, MDSC, macrophages, DC) and adopting different activation states in response to a changing microenvironment. Accumulating evidence exists that mononuclear phagocytes contribute to all phases of the cancer process. These cells orchestrate the inflammatory events during de novo carcinogenesis, participate in tumor immunosurveillance, and contribute to the progression of established tumors. At the tumor site, cells such as tumor-associated macrophages (TAM) are confronted with different tumor microenvironments, leading to TAM subsets with specialized functions. A better refinement of the molecular and functional heterogeneity of tumor-associated mononuclear phagocytes might pave the way for novel cancer therapies that directly target these tumor-supporting cells.


Biochimica et Biophysica Acta | 2016

Tissue-resident versus monocyte-derived macrophages in the tumor microenvironment.

Qods Lahmar; Jiri Keirsse; Damya Laoui; Kiavash Movahedi; Eva Van Overmeire; Jo A. Van Ginderachter

The tumor-promoting role of macrophages has been firmly established in most cancer types. However, macrophage identity has been a matter of debate, since several levels of complexity result in considerable macrophage heterogeneity. Ontogenically, tissue-resident macrophages derive from yolk sac progenitors which either directly or via a fetal liver monocyte intermediate differentiate into distinct macrophage types during embryogenesis and are maintained throughout life, while a disruption of the steady state mobilizes monocytes and instructs the formation of monocyte-derived macrophages. Histologically, the macrophage phenotype is heavily influenced by the tissue microenvironment resulting in molecularly and functionally distinct macrophages in distinct organs. Finally, a change in the tissue microenvironment as a result of infectious or sterile inflammation instructs different modes of macrophage activation. These considerations are relevant in the context of tumors, which can be considered as sites of chronic sterile inflammation encompassing subregions with distinct environmental conditions (for example, hypoxic versus normoxic). Here, we discuss existing evidence on the role of macrophage subpopulations in steady state tissue and primary tumors of the breast, lung, pancreas, brain and liver.


Leukemia | 2012

Multiple myeloma induces the immunosuppressive capacity of distinct myeloid-derived suppressor cell subpopulations in the bone marrow.

E Van Valckenborgh; Elio Schouppe; Kiavash Movahedi; E De Bruyne; E Menu; P. De Baetselier; Karin Vanderkerken; J. Van Ginderachter

Multiple myeloma induces the immunosuppressive capacity of distinct myeloid-derived suppressor cell subpopulations in the bone marrow


Ppar Research | 2008

Macrophages, PPARs, and Cancer

Jo A. Van Ginderachter; Kiavash Movahedi; Jan Van den Bossche; Patrick De Baetselier

Mononuclear phagocytes often function as control switches of the immune system, securing the balance between pro- and anti-inflammatory reactions. For this purpose and depending on the activating stimuli, these cells can develop into different subsets: proinflammatory classically activated (M1) or anti-inflammatory alternatively activated (M2) macrophages. The expression of the nuclear peroxisome proliferator-activated receptors (PPARs) is regulated by M1- or M2-inducing stimuli, and these receptors are generally considered to counteract inflammatory M1 macrophages, while actively promoting M2 activation. This is of importance in a tumor context, where M1 are important initiators of inflammation-driven cancers. As a consequence, PPAR agonists are potentially usefull for inhibiting the early phases of tumorigenesis through their antagonistic effect on M1. In more established tumors, the macrophage phenotype is more diverse, making it more difficult to predict the outcome of PPAR agonism. Overall, in our view current knowledge provides a sound basis for the clinical evaluation of PPAR ligands as chemopreventive agents in chronic inflammation-associated cancer development, while cautioning against the unthoughtful application of these agents as cancer therapeutics.


European Journal of Immunology | 2013

Tumor-induced myeloid-derived suppressor cell subsets exert either inhibitory or stimulatory effects on distinct CD8+ T-cell activation events.

Elio Schouppe; Camille Mommer; Kiavash Movahedi; Damya Laoui; Yannick Morias; Conny Gysemans; Ariane Luyckx; Patrick De Baetselier; Jo A. Van Ginderachter

Tumor growth coincides with an accumulation of myeloid‐derived suppressor cells (MDSCs), which exert immune suppression and which consist of two main subpopulations, known as monocytic (MO) CD11b+CD115+Ly6G−Ly6Chigh MDSCs and granulocytic CD11b+CD115−Ly6G+Ly6Cint polymorphonuclear (PMN)‐MDSCs. However, whether these distinct MDSC subsets hamper all aspects of early CD8+ T‐cell activation — including cytokine production, surface marker expression, survival, and cytotoxicity — is currently unclear. Here, employing an in vitro coculture system, we demonstrate that splenic MDSC subsets suppress antigen‐driven CD8+ T‐cell proliferation, but differ in their dependency on IFN‐γ, STAT‐1, IRF‐1, and NO to do so. Moreover, MO‐MDSC and PMN‐MDSCs diminish IL‐2 levels, but only MO‐MDSCs affect IL‐2Rα (CD25) expression and STAT‐5 signaling. Unexpectedly, however, both MDSC populations stimulate IFN‐γ production by CD8+ T cells on a per cell basis, illustrating that some T‐cell activation characteristics are actually stimulated by MDSCs. Conversely, MO‐MDSCs counteract the activation‐induced change in CD44, CD62L, CD162, and granzyme B expression, while promoting CD69 and Fas upregulation. Together, these effects result in an altered CD8+ T‐cell adhesiveness to the extracellular matrix and selectins, sensitivity to FasL‐mediated apoptosis, and cytotoxicity. Hence, MDSCs intricately influence different CD8+ T‐cell activation events in vitro, whereby some parameters are suppressed while others are stimulated.


Current Opinion in Oncology | 2017

Novel insights in the regulation and function of macrophages in the tumor microenvironment

Evangelia Bolli; Kiavash Movahedi; Damya Laoui; Jo A. Van Ginderachter

Purpose of review Tumors contain not only cancer cells but also nontransformed types of cells, the stromal cells. A bidirectional interplay exists between transformed and nontransformed cells leading to tumor progression and metastasis. Tumor-associated macrophages (TAMs) are the most abundant tumor-infiltrating leukocytes characterized by a high heterogeneity and plasticity. TAMs exhibit strong protumoral activities and are related to bad prognosis and worse overall survival in various cancer types. Recent findings Recent progress has delineated the existence of distinct TAM subsets in primary tumors and metastatic sites regulated by diverse mechanisms and triggering strong protumoral functions such as immunossuppression, angiogenesis, metastasis and resistance to current therapies. Summary Delineating the regulatory pathways governing TAM heterogeneity and activation could present a novel frontier in cancer therapy. TAM targeting/repolarization is considered as a promising novel therapeutic modality in combination with standard-of-care therapies or immuno checkpoint blockers.

Collaboration


Dive into the Kiavash Movahedi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damya Laoui

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Conny Gysemans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Elio Schouppe

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Nick Devoogdt

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Steve Schoonooghe

Flanders Institute for Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Tony Lahoutte

Free University of Brussels

View shared research outputs
Researchain Logo
Decentralizing Knowledge