Kidist Bobosha
Leiden University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kidist Bobosha.
Journal of Immunology | 2012
Annemieke Geluk; Kidist Bobosha; Jolien J. van der Ploeg-van Schip; John S. Spencer; Sayera Banu; Marcia V. S. B. Martins; Sang-Nae Cho; Kees L. M. C. Franken; Hee Jin Kim; Mohammad Khaja Mafij Uddin; Sheikh Abdul Hadi; Abraham Aseffa; Maria Cristina Vidal Pessolani; Geraldo M. B. Pereira; Hazel M. Dockrell; Tom H. M. Ottenhoff
Leprosy is not eradicable with currently available diagnostics or interventions, as evidenced by its stable incidence. Early diagnosis of Mycobacterium leprae infection should therefore be emphasized in leprosy research. It remains challenging to develop tests based on immunological biomarkers that distinguish individuals controlling bacterial replication from those developing disease. To identify biomarkers for field-applicable diagnostics, we determined cytokines/chemokines induced by M. leprae proteins in blood of leprosy patients and endemic controls (EC) from high leprosy-prevalence areas (Bangladesh, Brazil, Ethiopia) and from South Korea, where leprosy is not endemic anymore. M. leprae-sonicate–induced IFN-γ was similar for all groups, excluding M. leprae/IFN-γ as a diagnostic readout. By contrast, ML2478 and ML0840 induced high IFN-γ concentrations in Bangladeshi EC, which were completely absent for South Korean controls. Importantly, ML2478/IFN-γ could indicate distinct degrees of M. leprae exposure, and thereby the risk of infection and transmission, in different parts of Brazilian and Ethiopian cities. Notwithstanding these discriminatory responses, M. leprae proteins did not distinguish patients from EC in one leprosy-endemic area based on IFN-γ. Analyses of additional cytokines/chemokines showed that M. leprae and ML2478 induced significantly higher concentrations of MCP-1, MIP-1β, and IL-1β in patients compared with EC, whereas IFN-inducible protein-10, like IFN-γ, differed between EC from areas with dissimilar leprosy prevalence. This study identifies M. leprae-unique Ags, particularly ML2478, as biomarker tools to measure M. leprae exposure using IFN-γ or IFN-inducible protein-10, and also shows that MCP-1, MIP-1β, and IL-1β can potentially distinguish pathogenic immune responses from those induced during asymptomatic exposure to M. leprae.
PLOS Neglected Tropical Diseases | 2014
Kidist Bobosha; Elisa M. Tjon Kon Fat; Susan J. F. van den Eeden; Jolien J. van der Ploeg-van Schip; Claudia J. de Dood; Karin Dijkman; Kees L. M. C. Franken; Louis Wilson; Abraham Aseffa; John S. Spencer; Tom H. M. Ottenhoff; Paul L. A. M. Corstjens; Annemieke Geluk
Background Field-applicable tests detecting asymptomatic Mycobacterium leprae (M. leprae) infection or predicting progression to leprosy, are urgently required. Since the outcome of M. leprae infection is determined by cellular- and humoral immunity, we aim to develop diagnostic tests detecting pro-/anti-inflammatory and regulatory cytokines as well as antibodies against M. leprae. Previously, we developed lateral flow assays (LFA) for detection of cytokines and anti-PGL-I antibodies. Here we evaluate progress of newly developed LFAs for applications in resource-poor settings. Methods The combined diagnostic value of IP-10, IL-10 and anti-PGL-I antibodies was tested using M. leprae-stimulated blood of leprosy patients and endemic controls (EC). For reduction of the overall test-to-result time the minimal whole blood assay time required to detect distinctive responses was investigated. To accommodate LFAs for field settings, dry-format LFAs for IP-10 and anti-PGL-I antibodies were developed allowing storage and shipment at ambient temperatures. Additionally, a multiplex LFA-format was applied for simultaneous detection of anti-PGL-I antibodies and IP-10. For improved sensitivity and quantitation upconverting phosphor (UCP) reporter technology was applied in all LFAs. Results Single and multiplex UCP-LFAs correlated well with ELISAs. The performance of dry reagent assays and portable, lightweight UCP-LF strip readers indicated excellent field-robustness. Notably, detection of IP-10 levels in stimulated samples allowed a reduction of the whole blood assay time from 24 h to 6 h. Moreover, IP-10/IL-10 ratios in unstimulated plasma differed significantly between patients and EC, indicating the feasibility to identify M. leprae infection in endemic areas. Conclusions Dry-format UCP-LFAs are low-tech, robust assays allowing detection of relevant cytokines and antibodies in response to M. leprae in the field. The high levels of IP-10 and the required shorter whole blood assay time, render this cytokine useful to discriminate between leprosy patients and EC.
BMC Infectious Diseases | 2011
Rea Tschopp; Kidist Bobosha; Abraham Aseffa; Esther Schelling; Meseret Habtamu; Rahel Iwnetu; Elena Hailu; Rebuma Firdessa; Jemal Hussein; Douglas B. Young; Jakob Zinsstag
BackgroundBovine tuberculosis (BTB) is endemic in Ethiopian cattle. The aim of this study was to assess BTB prevalence at an intensive contact interface in Meskan Woreda (district) in cattle, small ruminants and suspected TB-lymphadenitis (TBLN) human patients.MethodsThe comparative intradermal test (CIDT) was carried out for all animals involved in the cross-sectional study and results interpreted using a > 4 mm and a > 2 mm cut-off. One PPD positive goat was slaughtered and lymph nodes subjected to culture and molecular typing. In the same villages, people with lymphadenitis were subjected to clinical examination. Fine needle aspirates (FNA) were taken from suspected TBLN and analyzed by smear microscopy and molecular typing.ResultsA total of 1214 cattle and 406 small ruminants were tested for BTB. In cattle, overall individual prevalence (> 2 mm cut-off) was 6.8% (CI: 5.4-8.5%) with 100% herd prevalence. Only three small ruminants (2 sheep and 1 goat) were reactors. The overall individual prevalence in small ruminants (> 2 mm cut-off) was 0.4% (CI: 0.03-5.1%) with 25% herd prevalence. Cattle from owners with PPD positive small ruminants were all PPD negative. 83% of the owners kept their sheep and goats inside their house at night and 5% drank regularly goat milk.FNAs were taken from 33 TBLN suspected cases out of a total of 127 screened individuals with lymph node swellings. Based on cytology results, 12 were confirmed TBLN cases. Nine out of 33 cultures were AFB positive. Culture positive samples were subjected to molecular typing and they all yielded M. tuberculosis. M. tuberculosis was also isolated from the goat that was slaughtered.ConclusionsThis study highlighted a low BTB prevalence in sheep and goats despite intensive contact with cattle reactors. TBLN in humans was caused entirely by M. tuberculosis, the human pathogen. M. tuberculosis seems to circulate also in livestock but their role at the interface is unknown.
BMC Infectious Diseases | 2015
Saraswoti Khadge; Sayera Banu; Kidist Bobosha; Jolien J. van der Ploeg-van Schip; Isabela Maria B. Goulart; Pratibha Thapa; Chhatra B. Kunwar; Krista E. van Meijgaarden; Susan J. F. van den Eeden; Louis Wilson; Senjuti Kabir; Hymonti Dey; Luiz Ricardo Goulart; Janaina Lobato; Washington João Carvalho; Kees L. M. C. Franken; Abraham Aseffa; John S. Spencer; Linda Oskam; Tom H.M. Otttenhoff; Deanna A. Hagge; Annemieke Geluk
BackgroundAcute inflammatory reactions are a frequently occurring, tissue destructing phenomenon in infectious- as well as autoimmune diseases, providing clinical challenges for early diagnosis. In leprosy, an infectious disease initiated by Mycobacterium leprae (M. leprae), these reactions represent the major cause of permanent neuropathy. However, laboratory tests for early diagnosis of reactional episodes which would significantly contribute to prevention of tissue damage are not yet available.Although classical diagnostics involve a variety of tests, current research utilizes limited approaches for biomarker identification. In this study, we therefore studied leprosy as a model to identify biomarkers specific for inflammatory reactional episodes.MethodsTo identify host biomarker profiles associated with early onset of type 1 leprosy reactions, prospective cohorts including leprosy patients with and without reactions were recruited in Bangladesh, Brazil, Ethiopia and Nepal. The presence of multiple cyto-/chemokines induced by M. leprae antigen stimulation of peripheral blood mononuclear cells as well as the levels of antibodies directed against M. leprae-specific antigens in sera, were measured longitudinally in patients.ResultsAt all sites, longitudinal analyses showed that IFN-γ-, IP-10-, IL-17- and VEGF-production by M. leprae (antigen)-stimulated PBMC peaked at diagnosis of type 1 reactions, compared to when reactions were absent. In contrast, IL-10 production decreased during type 1 reaction while increasing after treatment. Thus, ratios of these pro-inflammatory cytokines versus IL-10 provide useful tools for early diagnosing type 1 reactions and evaluating treatment. Of further importance for rapid diagnosis, circulating IP-10 in sera were significantly increased during type 1 reactions. On the other hand, humoral immunity, characterized by M. leprae-specific antibody detection, did not identify onset of type 1 reactions, but allowed treatment monitoring instead.ConclusionsThis study identifies immune-profiles as promising host biomarkers for detecting intra-individual changes during acute inflammation in leprosy, also providing an approach for other chronic (infectious) diseases to help early diagnose these episodes and contribute to timely treatment and prevention of tissue damage.
European Journal of Immunology | 2009
Markos Abebe; T. Mark Doherty; Abraham Aseffa; Kidist Bobosha; Abebech Demissie; Martha Zewdie; Howard Engers; Peter Andersen; Louise Kim; Jim F. Huggett; G. A. W. Rook; Lawrence Yamuah; Alimuddin Zumla
Mycobacterium tuberculosis remains one of the worlds deadliest pathogens in part because of its ability to persist in the face of an active immune response. It has been suggested that apoptosis of infected macrophages is one way in which the host deals with intracellular pathogens and that M. tuberculosis can inhibit this process. To assess the relevance of this process for human disease, we compared the expression of multiple genes involved in the activation of the extrinsic (“death receptor initiated”) pathway of apoptosis in 29 tuberculosis patients, 70 tuberculosis contacts and 27 community controls from Ethiopia. We found that there is a strong upregulation of genes for factors that promote apoptosis in PBMC from individuals with active disease, including TNF‐α and its receptors, Fas and FasL and pro‐Caspase 8. The anti‐apoptotic factor FLIP, however, was also upregulated. A possible explanation for this dichotomy was given by fractionation of PBMC using CD14, which suggests that macrophage/monocytes may regulate several key molecules differently from non‐monocytic cells (especially TNF‐α and its receptors, a finding confirmed by protein ELISA) potentially reducing the sensitivity to apoptotic death of monocyte/macrophages – the primary host cell for M. tuberculosis. This may represent an important survival strategy for the pathogen.
Memorias Do Instituto Oswaldo Cruz | 2012
Kidist Bobosha; Sheila Tuyet Tang; Jolien J. van der Ploeg-van Schip; Marcia Vsb Martins; Ole Lund; Kees L. M. C. Franken; Saraswoti Khadge; Maria Araci de Andrade Pontes; Heitor de Sá Gonçalves; Jemal Hussien; Pratibha Thapa; Chhatra B. Kunwar; Deanna A. Hagge; Abraham Aseffa; Maria Cristina Vidal Pessolani; Geraldo M. B. Pereira; Tom H. M. Ottenhoff; Annemieke Geluk
Silent transmission of Mycobacterium leprae, as evidenced by stable leprosy incidence rates in various countries, remains a health challenge despite the implementation of multidrug therapy worldwide. Therefore, the development of tools for the early diagnosis of M. leprae infection should be emphasised in leprosy research. As part of the continuing effort to identify antigens that have diagnostic potential, unique M. leprae peptides derived from predicted virulence-associated proteins (group IV.A) were identified using advanced genome pattern programs and bioinformatics. Based on human leukocyte antigen (HLA)-binding motifs, we selected 21 peptides that were predicted to be promiscuous HLA-class I T-cell epitopes and eight peptides that were predicted to be HLA-class II restricted T-cell epitopes for field-testing in Brazil, Ethiopia and Nepal. High levels of interferon (IFN)-γ were induced when peripheral blood mononuclear cells (PBMCs) from tuberculoid/borderline tuberculoid leprosy patients located in Brazil and Ethiopia were stimulated with the ML2055 p35 peptide. PBMCs that were isolated from healthy endemic controls living in areas with high leprosy prevalence (EChigh) in Ethiopia also responded to the ML2055 p35 peptide. The Brazilian EChigh group recognised the ML1358 p20 and ML1358 p24 peptides. None of the peptides were recognised by PBMCs from healthy controls living in non-endemic region. In Nepal, mixtures of these peptides induced the production of IFN-γ by the PBMCs of leprosy patients and EChigh. Therefore, the M. leprae virulence-associated peptides identified in this study may be useful for identifying exposure to M. leprae in population with differing HLA polymorphisms.
Journal of Tropical Medicine | 2012
Kidist Bobosha; Jolien J. van der Ploeg-van Schip; Danuza Esquenazi; Marjorie M. da S. Guimarães; Marcia Valéria B.S. Martins; Yonas Fantahun; Abraham Aseffa; Kees L. M. C. Franken; Ronaldo Altenburg Gismondi; Maria Cristina Vidal Pessolani; Tom H. M. Ottenhoff; Geraldo Moura Batista Pereira; Annemieke Geluk
The stable incidence of new leprosy cases suggests that transmission of infection continues despite worldwide implementation of MDT. Thus, specific tools are needed to diagnose early stage Mycobacterium leprae infection, the likely sources of transmission. M. leprae antigens that induce T-cell responses in M. leprae exposed and/or infected individuals thus are major targets for new diagnostic tools. Previously, we showed that ML1601c was immunogenic in patients and healthy household contacts (HHC). However, some endemic controls (EC) also recognized this protein. To improve the diagnostic potential, IFN-γ responses to ML1601c peptides were assessed using PBMC from Brazilian leprosy patients and EC. Five ML1601c peptides only induced IFN-γ in patients and HHC. Moreover, 24-hour whole-blood assay (WBA), two ML1601c peptides could assess the level of M. leprae exposure in Ethiopian EC. Beside IFN-γ, also IP-10, IL-6, IL-1β, TNF-α, and MCP-1 were increased in EC from areas with high leprosy prevalence in response to these ML1601c peptides. Thus, ML1601c peptides may be useful for differentiating M. leprae exposed or infected individuals and can also be used to indicate the magnitude of M. leprae transmission even in the context of various HLA alleles as present in these different genetic backgrounds.
Medicine | 2015
Sylvie Amu; Kidist Bobosha; Rebecka Lantto; Anna Nilsson; Birtukan Endale; Meseret Gebre; Abraham Aseffa; Bence Rethi; Rawleigh Howe; Francesca Chiodi
AbstractT follicular helper (Tfh) cells are important components in development of specific humoral immune responses; whether the number and biology of Tfh cells is impaired in HIV-1-infected children is not yet studied.The frequency, phenotype, and function of Tfh cells and B cells were determined in blood of HIV-1-infected children receiving antiretroviral therapy (ART) and age-matched controls. Flow cytometry was used to characterize the frequency of Tfh cells and B cell subsets. Cytokine expression was measured after in vitro activation of Tfh cells.A reduced frequency of memory Tfh cells (P < 0.001) was identified in HIV-1-infected children and, on these cells, a reduced expression of programmed death-1 (PD-1) and inducible T cell costimulator (ICOS) (P < 0.001 and P < 0.01). Upon activation, the capacity of Tfh cells to express IL-4, an important cytokine for B cell function, was impaired in HIV-1-infected children.B cell subpopulations in HIV-1-infected children displayed significant differences from the control group: the frequency of resting memory (RM) B cells was reduced (P < 0.01) whereas the frequency of exhausted memory B cells increased (P < 0.001). Interestingly, the decline of RM cells correlated with the reduction of memory Tfh cells (P = 0.02).Our study shows that function and phenotype of Tfh cells, pivotal cells for establishment of adaptive B cell responses, are impaired during HIV-1 infection in children. A consistent reduction of memory Tfh cells is associated with declined frequencies of RM B cells, creating a novel link between dysfunctional features of these cell types, major players in establishment of humoral immunity.
Scientific Reports | 2017
Desalegn Yibeltal; Kidist Bobosha; Temesgen E. Andargie; Mahlet Lemma; Meseret Gebre; Eyasu Mekonnen; Abiy Habtewold; Anna Nilsson; Abraham Aseffa; Rawleigh Howe; Francesca Chiodi
HBV vaccine has 95% efficacy in children to prevent HBV infection and related cancer. We conducted a prospective study in HIV-1 infected children receiving ART (n = 49) and controls (n = 63) to assess humoral and cellular responses to HBV vaccine provided with three doses under an accelerated schedule of 4 weeks apart. At 1 month post-vaccination all children, except 4 HIV-1 infected, displayed protective antibody (ab) titers to HBV vaccine; ab titers were lower in infected children (P < 0.0001). Ab titers decreased (P < 0.0001) in both HIV-1 infected and control children at 6 months. The frequency of circulating Tfh (cTFh) cells was 20.3% for controls and 20.8% for infected children prior to vaccination and remained comparable post-vaccination. Cytokine expression by cTfh cells upon activation with HBV antigen was comparable in the two groups at baseline and 1 month post-vaccination. Higher plasma levels (P < 0.0001) of CXCL13 were found in infected children which correlated with cTfh cell frequency at baseline. In conclusion, a lower ab response to HBV vaccine was measured in HIV-1 infected children. The frequency and activation profile of cTfh cells was comparable in infected children and controls suggesting that cells other than Tfh cells are responsible for impaired ab response to HBV vaccine.
PLOS Neglected Tropical Diseases | 2017
Edessa Negera; Steven L. Walker; Kidist Bobosha; Rawleigh Howe; Abraham Aseffa; Hazel M. Dokrell; Diana N. J. Lockwood
Leprosy is a disease caused by Mycobacterium leprae where the clinical spectrum correlates with the patient immune response. Erythema Nodosum Leprosum (ENL) is an immune-mediated inflammatory complication, which causes significant morbidity in affected leprosy patients. The underlying cause of ENL is not conclusively known. However, immune-complexes and cell-mediated immunity have been suggested in the pathogenesis of ENL. The aim of this study was to investigate the regulatory T-cells in patients with ENL. Forty-six untreated patients with ENL and 31 non-reactional lepromatous leprosy (LL) patient controls visiting ALERT Hospital, Ethiopia were enrolled to the study. Blood samples were obtained before, during and after prednisolone treatment of ENL cases. Peripheral blood mononuclear cells (PBMCs) were isolated and used for immunophenotyping of regulatory T-cells by flow cytometry. Five markers: CD3, CD4 or CD8, CD25, CD27 and FoxP3 were used to define CD4+ and CD8+ regulatory T-cells. Clinical and histopathological data were obtained as supplementary information. All patients had been followed for 28 weeks. Patients with ENL reactions had a lower percentage of CD4+ regulatory T-cells (1.7%) than LL patient controls (3.8%) at diagnosis of ENL before treatment. After treatment, the percentage of CD4+regulatory T-cells was not significantly different between the two groups. The percentage of CD8+ regulatory T-cells was not significantly different in ENL and LL controls before and after treatment. Furthermore, patients with ENL had higher percentage of CD4+ T-ells and CD4+/CD8+ T-cells ratio than LL patient controls before treatment. The expression of CD25 on CD4+ and CD8+ T-cells was not significantly different in ENL and LL controls suggesting that CD25 expression is not associated with ENL reactions while FoxP3 expression on CD4+ T-cells was significantly lower in patients with ENL than in LL controls. We also found that prednisolone treatment of patients with ENL reactions suppresses CD4+ T-cell but not CD8+ T-cell frequencies. Hence, ENL is associated with lower levels of T regulatory cells and higher CD4+/CD8+ T-cell ratio. We suggest that this loss of regulation is one of the causes of ENL.