Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiem Vu is active.

Publication


Featured researches published by Kiem Vu.


Eukaryotic Cell | 2009

Immortalized Human Brain Endothelial Cell Line HCMEC/D3 as a Model of the Blood-Brain Barrier Facilitates In Vitro Studies of Central Nervous System Infection by Cryptococcus neoformans

Kiem Vu; Babette B. Weksler; Ignacio A. Romero; Pierre-Olivier Couraud; Angie Gelli

ABSTRACT Cryptococcus neoformans cells must cross the blood-brain barrier prior to invading the central nervous system. Here we demonstrate that the immortalized human brain endothelial cell line HCMEC/D3 is a useful alternative to primary brain endothelial cells as a model of the blood-brain barrier for studies of central nervous system infection.


Mbio | 2014

Invasion of the Central Nervous System by Cryptococcus neoformans Requires a Secreted Fungal Metalloprotease

Kiem Vu; R. Tham; John P. Uhrig; George R. Thompson; S. Na Pombejra; Mantana Jamklang; J. M. Bautos; Angie Gelli

ABSTRACT Cryptococcus spp. cause life-threatening fungal infection of the central nervous system (CNS), predominantly in patients with a compromised immune system. Why Cryptococcus neoformans has this remarkable tropism for the CNS is not clear. Recent research on cerebral pathogenesis of C. neoformans revealed a predominantly transcellular migration of cryptococci across the brain endothelium; however, the identities of key fungal virulence factors that function specifically to invade the CNS remain unresolved. Here we found that a novel, secreted metalloprotease (Mpr1) that we identified in the extracellular proteome of C. neoformans (CnMpr1) is required for establishing fungal disease in the CNS. Mpr1 belongs to a poorly characterized M36 class of fungalysins that are expressed in only some fungal species. A strain of C. neoformans lacking the gene encoding Mpr1 (mpr1Δ) failed to breach the endothelium in an in vitro model of the human blood-brain barrier (BBB). A mammalian host infected with the mpr1Δ null strain demonstrated significant improvement in survival due to a reduced brain fungal burden and lacked the brain pathology commonly associated with cryptococcal disease. The in vivo studies further indicate that Mpr1 is not required for fungal dissemination and Mpr1 likely targets the brain endothelium specifically. Remarkably, the sole expression of CnMPR1 in Saccharomyces cerevisiae resulted in a robust migration of yeast cells across the brain endothelium, demonstrating Mpr1’s specific activity in breaching the BBB and suggesting that Mpr1 may function independently of the hyaluronic acid-CD44 pathway. This distinct role for Mpr1 may develop into innovative treatment options and facilitate a brain-specific drug delivery platform. IMPORTANCE Cryptococcus neoformans is a medically relevant fungal pathogen causing significant morbidity and mortality, particularly in immunocompromised individuals. An intriguing feature is its strong neurotropism, and consequently the hallmark of cryptococcal disease is a brain infection, cryptococcal meningoencephalitis. For C. neoformans to penetrate the central nervous system (CNS), it first breaches the blood-brain barrier via a transcellular pathway; however, the identities of fungal factors required for this transmigration remain largely unknown. In an effort to identify extracellular fungal proteins that could mediate interactions with the brain endothelium, we undertook a proteomic analysis of the extracellular proteome and identified a secreted metalloprotease (Mpr1) belonging to the M36 class of fungalysins. Here we found that Mpr1 promotes migration of C. neoformans across the brain endothelium and into the CNS by facilitating attachment of cryptococci to the endothelium surface, thus underscoring the critical role of M36 proteases in fungal pathogenesis. Cryptococcus neoformans is a medically relevant fungal pathogen causing significant morbidity and mortality, particularly in immunocompromised individuals. An intriguing feature is its strong neurotropism, and consequently the hallmark of cryptococcal disease is a brain infection, cryptococcal meningoencephalitis. For C. neoformans to penetrate the central nervous system (CNS), it first breaches the blood-brain barrier via a transcellular pathway; however, the identities of fungal factors required for this transmigration remain largely unknown. In an effort to identify extracellular fungal proteins that could mediate interactions with the brain endothelium, we undertook a proteomic analysis of the extracellular proteome and identified a secreted metalloprotease (Mpr1) belonging to the M36 class of fungalysins. Here we found that Mpr1 promotes migration of C. neoformans across the brain endothelium and into the CNS by facilitating attachment of cryptococci to the endothelium surface, thus underscoring the critical role of M36 proteases in fungal pathogenesis.


Journal of Biological Chemistry | 2010

Cch1 Restores Intracellular Ca2+ in Fungal Cells during Endoplasmic Reticulum Stress

Min Pyo Hong; Kiem Vu; Jennifer Bautos; Angie Gelli

Pathogens endure and proliferate during infection by exquisitely coping with the many stresses imposed by the host to prevent pathogen survival. Recent evidence has shown that fungal pathogens and yeast respond to insults to the endoplasmic reticulum (ER) by initiating Ca2+ influx across their plasma membrane. Although the high affinity Ca2+ channel, Cch1, and its subunit Mid1, have been suggested as the protein complex responsible for mediating Ca2+ influx, a direct demonstration of the gating mechanism of the Cch1 channel remains elusive. In this first mechanistic study of Cch1 channel activity we show that the Cch1 channel from the model human fungal pathogen, Cryptococcus neoformans, is directly activated by the depletion of intracellular Ca2+ stores. Electrophysiological analysis revealed that agents that enable ER Ca2+ store depletion promote the development of whole cell inward Ca2+ currents through Cch1 that are effectively blocked by La3+ and dependent on the presence of Mid1. Cch1 is permeable to both Ca2+ and Ba2+; however, unexpectedly, in contrast to Ca2+ currents, Ba2+ currents are steeply voltage-dependent. Cch1 maintains a strong Ca2+ selectivity even in the presence of high concentrations of monovalent ions. Single channel analysis indicated that Cch1 channel conductance is small, similar to that reported for the Ca2+ current ICRAC. This study demonstrates that Cch1 functions as a store-operated Ca2+-selective channel that is gated by intracellular Ca2+ depletion. The inability of cryptococcal cells that lacked the Cch1-Mid1 channel to survive ER stress suggests that Cch1 and its co-regulator, Mid1, are critical players in the restoration of Ca2+ homeostasis.


Infection and Immunity | 2013

Cryptococcus neoformans promotes its transmigration into the central nervous system by inducing molecular and cellular changes in brain endothelial cells.

Kiem Vu; Richard A. Eigenheer; Brett S. Phinney; Angie Gelli

ABSTRACT Cryptococcus spp. cause fungal meningitis, a life-threatening infection that occurs predominately in immunocompromised individuals. In order for Cryptococcus neoformans to invade the central nervous system (CNS), it must first penetrate the brain endothelium, also known as the blood-brain barrier (BBB). Despite the importance of the interrelation between C. neoformans and the brain endothelium in establishing CNS infection, very little is known about this microenvironment. Here we sought to resolve the cellular and molecular basis that defines the fungal-BBB interface during cryptococcal attachment to, and internalization by, the human brain endothelium. In order to accomplish this by a systems-wide approach, the proteomic profile of human brain endothelial cells challenged with C. neoformans was resolved using a label-free differential quantitative mass spectrometry method known as spectral counting (SC). Here, we demonstrate that as brain endothelial cells associate with, and internalize, cryptococci, they upregulate the expression of several proteins involved with cytoskeleton, metabolism, signaling, and inflammation, suggesting that they are actively signaling and undergoing cytoskeleton remodeling via annexin A2, S100A10, transgelin, and myosin. Transmission electronic microscopy (TEM) analysis demonstrates dramatic structural changes in nuclei, mitochondria, the endoplasmic reticulum (ER), and the plasma membrane that are indicative of cell stress and cell damage. The translocation of HMGB1, a marker of cell injury, the downregulation of proteins that function in transcription, energy production, protein processing, and the upregulation of cyclophilin A further support the notion that C. neoformans elicits changes in brain endothelial cells that facilitate the migration of cryptococci across the BBB and ultimately induce endothelial cell necrosis.


Medical Mycology | 2009

Astemizole and an analogue promote fungicidal activity of fluconazole against Cryptococcus neoformans var. grubii and Cryptococcus gattii.

Kiem Vu; Angie Gelli

Cryptococcus neoformans is the leading cause of fungal meningitis, a life-threatening infection that occurs predominately in immuocompromised patients. Current drug therapies are limited to amphotericin B, fl ucytosine and the azoles since the echinocandins have no demonstrated activity against yeast like pathogens. Fluconazole, a drug belonging to the azole class and often the only available antifungal in the developing world, is fungistatic and therefore not effective in clearing cryptococcal infections in immunosuppressed individuals. Here we report that astemizole and a closely related analog (A2) promoted in vitro fungicidal activity of fl uconazole against Cryptococcus neoformans var. grubii and Cryptococcus gattii . Astemizole, a second-generation antihistamine drug used as an H 1 antagonist, has also been found to have antimalarial activity. Disk diffusion assays and MIC and MFC analysis confi rmed that the inhibitory concentrations of these drug combinations were fungicidal. When tested in vivo , astemizole or A2 in combination with fl uconazole signifi cantly improved the survival of Galleria mellonella (wax moth caterpillar) that had been previously challenged with C. neoformans but not when caterpillars were challenged with a fl uconazole-resistant strain. The fi ndings reported here suggest that fungicidal combinations between azoles and other existing drugs may represent an alternative strategy for improving treatments for fungal infections.


Eukaryotic Cell | 2013

Activity of the Calcium Channel Pore Cch1 Is Dependent on a Modulatory Region of the Subunit Mid1 in Cryptococcus neoformans

Min Pyo Hong; Kiem Vu; Jennifer Bautos; Rick C. Tham; Mantana Jamklang; John P. Uhrig; Angie Gelli

ABSTRACT Calcium (Ca2+)-mediated signaling events in fungal pathogens such as Cryptococcus neoformans are central to physiological processes, including those that mediate stress responses and promote virulence. The Cch1-Mid1 channel (CMC) represents the only high-affinity Ca2+ channel in the plasma membrane of fungal cells; consequently, cryptococci cannot survive in low-Ca2+ environments in the absence of CMC. Previous electrophysiological characterization revealed that Cch1, the predicted channel pore, and Mid1, a binding partner of Cch1, function as a store-operated Ca2+-selective channel gated by depletion of endoplasmic reticulum (ER) Ca2+ stores. Cryptococci lacking CMC did not survive ER stress, indicating its critical role in restoring Ca2+ homeostasis. Despite the requirement for Mid1 in promoting Ca2+ influx via Cch1, identification of the role of Mid1 remains elusive. Here we show that the C-terminal tail of Mid1 is a modulatory region that impinges on Cch1 channel activity directly and mediates the trafficking of Mid1 to the plasma membrane. This region consists of the last 24 residues of Mid1, and the functional expression of Mid1 in a human embryonic cell line (HEK293) and in C. neoformans is dependent on this domain. Substitutions of arginine (R619A) or cysteine (C621A) in the modulatory region failed to target Mid1 to the plasma membrane and prevented CMC activity. Interestingly, loss of a predicted protein kinase C (PKC)-phosphorylated serine residue (S605A) had no effect on Mid1 trafficking but did alter the kinetics of Cch1 channel activity. Thus, establishment of Ca2+ homeostasis in C. neoformans is dependent on a modulatory domain of Mid1.


Antimicrobial Agents and Chemotherapy | 2016

Fluconazole Susceptibility in Cryptococcus gattii Is Dependent on the ABC Transporter Pdr11

Mai Lee Yang; John P. Uhrig; Kiem Vu; Anil Singapuri; Michael Dennis; Angie Gelli; George R. Thompson

ABSTRACT Cryptococcus gattii isolates from the Pacific Northwest have exhibited higher fluconazole MICs than isolates from other sites. The mechanism of fluconazole resistance in C. gattii is unknown. We sought to determine the role of the efflux pumps Mdr1 and Pdr11 in fluconazole susceptibility. Using biolistic transformation of the parent isolate, we created a strain lacking Mdr1 (mdr1Δ) and another strain lacking Pdr11 (pdr11Δ). Phenotypic virulence factors were assessed by standard methods (capsule size, melanin production, growth at 30 and 37°C). Survival was assessed in an intranasal murine model of cryptococcosis. Antifungal MICs were determined by the M27-A3 methodology. No differences in key virulence phenotypic components were identified. Fluconazole susceptibility was unchanged in the Mdr1 knockout or reconstituted isolates. However, fluconazole MICs decreased from 32 μg/ml for the wild-type isolate to <0.03 μg/ml for the pdr11Δ strain and reverted to 32 μg/ml for the reconstituted strain. In murine models, no difference in virulence was observed between wild-type, knockout, or reconstituted isolates. We conclude that Pdr11 plays an essential role in fluconazole susceptibility in C. gattii. Genomic and expression differences between resistant and susceptible C. gattii clinical isolates should be assessed further in order to identify other potential mechanisms of resistance.


Analytical Biochemistry | 2009

The functional expression of toxic genes: Lessons learned from molecular cloning of CCH1, a high-affinity Ca2+ channel

Kiem Vu; Jennifer Bautos; Min Pyo Hong; Angie Gelli

Some genes cannot be cloned by conventional methods because in most cases the genes or gene products are toxic to Escherichia coli. CCH1 is a high-affinity Ca(2+) channel present in the plasma membrane of Cryptococcus neoformans and other fungi. Like many toxic genes, the molecular cloning of CCH1 has been a major challenge; consequently, direct studies of CCH1 channel activity in heterologous expression systems have been impossible. We have devised a straightforward approach that resulted in the molecular cloning and functional expression of CCH1 by exploiting homologous recombination both in vitro and in vivo. This approach precluded the standard enzyme digestion-mediated ligation reactions and the subsequent isolation of plasmids from E. coli. The shuttle plasmid carrying CCH1-GFP, which was prepared in vitro and propagated in yeast, was successfully expressed in the mammalian cell line HEK293 (human embryonic kidney 293). CCH1 transcripts were detected only in HEK293 cells transfected with the plasmid DNA. Fluorescence microscopy studies revealed the expression of CCH1-GFP fusion protein on the cell surface of HEK293 cells, similar to the localization pattern of a well-characterized plasma membrane-associated K(+) channel. This approach will be particularly useful for genes that encode ion channels and transporters that cannot be cloned by conventional techniques requiring E. coli.


PLOS ONE | 2018

The structure-function analysis of the Mpr1 metalloprotease determinants of activity during migration of fungal cells across the blood-brain barrier

Sarisa Na Pombejra; Mantana Jamklang; John P. Uhrig; Kiem Vu; Angie Gelli

Cryptococcal meningoencephalitis, the most common form of cryptococcosis, is caused by the opportunistic fungal pathogen, Cryptococcus neoformans. Molecular strategies used by C. neoformans to invade the central nervous system (CNS) have been the focus of several studies. Recently, the role of a novel secreted metalloprotease (Mpr1) in the pathogenicity of C. neoformans was confirmed by studies demonstrating that Mpr1 mediated the migration of fungal cells into the CNS. Given this central function, the aim here was to identify the molecular determinants of Mpr1 activity and resolve their role in the migration of cryptococci across the blood-brain barrier (BBB). The Mpr1 protein belongs to an understudied group of metalloproteases of the M36 class of fungalysins unique to fungi. They are generally synthesized as propeptides with fairly long prodomains and highly conserved regions within their catalytic core. Through structure-function analysis of Mpr1, our study identified the prodomain cleavage sites of Mpr1 and demonstrated that when mutated, the prodomain appears to remain attached to the catalytic C-terminus of Mpr1 rendering a nonfunctional Mpr1 protein and an inability for cryptococci to cross the BBB. We found that proteolytic activity of Mpr1 was dependent on the coordination of zinc with two histidine residues in the active site of Mpr1, since amino acid substitutions in the HExxH motif abolished Mpr1 proteolytic activity and prevented the migration of cryptococci across the BBB. A phylogenetic analysis of Mpr1 revealed a distinct pattern likely reflecting the neurotropic nature of C. neoformans and the specific function of Mpr1 in breaching the BBB. This study contributes to a deeper understanding of the molecular regulation of Mpr1 activity and may lead to the development of specific inhibitors that could be used to restrict fungal penetration of the CNS and thus prevent cryptococcal meningoencephalitis-related deaths.


Open Forum Infectious Diseases | 2017

Mechanisms of flucytosine resistance in Cryptococcus gattii may be independent of the FCY2-FCY1-FUR1 pathway.

Kiem Vu; George R. Thompson; Chandler C. Roe; Jane E. Sykes; Elizabeth Dreibe; Shawn R. Lockhart; Wieland Meyer; David M. Engelthaler; Angie Gelli

Abstract Background Cryptococcosis is an opportunistic fungal infection caused by both Cryptococcus neoformans and its sibling species, Cryptococcus gattii. Flucytosine (5FC) is one of the most widely used antifungals against Cryptococcus spp., yet very few studies have looked at the molecular mechanisms responsible for 5FC resistance in this pathogen. Methods Eleven Cryptococcus gattii clinical isolates were selected based on differential 5FC susceptibility. All isolates underwent whole-genome sequencing and genomic differences in key genes involved in flucytosine metabolism were examined. Heterologous expression of FCY1 and spot sensitivity assays were performed to examine regions of interest based on genomic differences. Results Susceptibility assays and sequencing analysis revealed an association between a point mutation in cytosine deaminase (FCY1) and 5FC resistance in two C. gattii clinical isolates, B9322 and JS5. This mutation results in the replacement of arginine for histidine at position 29 and occurs within an unconserved stretch of amino acids. Heterologous expression of FCY1 and spot sensitivity assays demonstrate that the point mutation did not have any effect on FCY1 activities and was not responsible for 5FC resistance. Comparative sequence analysis further show that no amino acid changes were observed in either cytosine permeases (FCY2-4) or uracil phosphoribosyltransferase (UPRTase, encoded by FUR1) among 5FC resistant and 5FC susceptible C. gattii isolates. Conclusion Together, our work suggests that the mediator(s) of 5FC resistance in B9322 and JS5 is likely found either downstream of FUR1 or on disparate regulatory pathways that modulate flucytosine metabolism. These findings suggest clinical 5FC resistance in C. gattii may occur by a nontraditional mechanism(s). Disclosures All authors: No reported disclosures.

Collaboration


Dive into the Kiem Vu's collaboration.

Top Co-Authors

Avatar

Angie Gelli

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Uhrig

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Pyo Hong

University of California

View shared research outputs
Top Co-Authors

Avatar

Anil Singapuri

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge