Kiflai Bein
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kiflai Bein.
Journal of Biological Chemistry | 2000
Kiflai Bein; Michael Simons
Thrombospondins are thought to function as inhibitors of angiogenesis. However, the mechanism(s) of this activity is not well understood. In this study, we have used the yeast two-hybrid system to identify proteins that interact with the thrombospondins 1 (TSP1) and 2 (TSP2) properdin-like type 1 repeats (TSR). One of the proteins identified that interacted with both TSR was matrix metalloproteinase 2 (MMP2). The isolated MMP2 cDNA clone encoded amino acid residues 237–633, which include the fibronectin-like gelatin binding region flanking the catalytic center and the carboxyl hemopexin-like region. Further testing of this clone demonstrated that the TSR interacted with the NH2-terminal region of the MMP2 that contains the catalytic domain. The protein interaction observed in yeast was further demonstrated by immunoprecipitation and Western blotting using purified intact TSP1, TSP2, MMP2, and MMP9. Although MMP2 interacted with TSP1 and TSP2 via its gelatin-binding domain or a closely mapping site, neither TSP1 nor TSP2 was degraded by MMP2 in vitro. Tissue culture and in vitro assays demonstrated that the presence of purified TSR and intact TSP1 resulted in inhibition of MMP activity. The ability of TSP1 to inhibit MMP3-dependent activation of pro-MMP9 and thrombin-induced activation of pro-MMP2 suggests that the TSPs may inhibit MMP activity by preventing activation of the MMP2 and MMP9 zymogens.
Molecular Nutrition & Food Research | 2011
Kiflai Bein; George D. Leikauf
Acrolein is a respiratory irritant that can be generated during cooking and is in environmental tobacco smoke. More plentiful in cigarette smoke than polycyclic aromatic hydrocarbons (PAH), acrolein can adduct tumor suppressor p53 (TP53) DNA and may contribute to TP53-mutations in lung cancer. Acrolein is also generated endogenously at sites of injury, and excessive breath levels (sufficient to activate metalloproteinases and increase mucin transcripts) have been detected in asthma and chronic obstructive pulmonary disease (COPD). Because of its reactivity with respiratory-lining fluid or cellular macromolecules, acrolein alters gene regulation, inflammation, mucociliary transport, and alveolar-capillary barrier integrity. In laboratory animals, acute exposures have lead to acute lung injury and pulmonary edema similar to that produced by smoke inhalation whereas lower concentrations have produced bronchial hyperreactivity, excessive mucus production, and alveolar enlargement. Susceptibility to acrolein exposure is associated with differential regulation of cell surface receptor, transcription factor, and ubiquitin-proteasome genes. Consequent to its pathophysiological impact, acrolein contributes to the morbidly and mortality associated with acute lung injury and COPD, and possibly asthma and lung cancer.
Circulation Research | 1997
Mansoor Husain; Kiflai Bein; Lianwei Jiang; Seth L. Alper; Michael Simons; Robert D. Rosenberg
Considerable controversy surrounds the role of the c-myb proto-oncogene in vascular smooth muscle cells (VSMCs). Previous investigations using antisense approaches have suggested a relationship between c-myb expression, cell cycle progression, and cytoplasmic Ca2+ concentration ([Ca2+]cyt). However, the ability of certain antisense oligonucleotides to bind and inactivate growth factors allows alternative explanations. To define more specifically the role of c-Myb in cultured VSMCs (SVE and A10 cell lines), we have generated stable cell clones expressing a dominant-negative c-Myb lacking critical elements of the DNA binding domain (delta5-SVE) and transiently transfected cell populations (GRE-MEn-SVE and GRE-MEn-A10) expressing a glucocorticoid-inducible chimeric protein that targets the Drosophila Engrailed repressor domain to c-Myb-responsive promoters. The delta5-SVE clones and GRE-MEn cell populations exhibit a 60% reduction in mean intracellular c-Myb activity, as measured by cotransfection assays with a c-Myb-responsive reporter, a 42% decrease in the mean S phase entry of growth-arrested (G[0]) cells after serum stimulation, and a 36% inhibition of mean cell proliferation over 4 days. These cells also display 28% (34-nmol/L) and 30% (42-nmol/L) reductions in mean [Ca2+]cyt at G(0) and at the G1/S interface, respectively, as well as significant reductions in the peak [Ca2+]cyt responses to thapsigargin (5 micromol/L) and caffeine (10 mmol/L). These latter reductions in operationally defined Ca2+ pools were observed both at different stages of the cell cycle and after transient induction of the dominant-interfering construct, suggesting that c-Myb regulates these releasable Ca2+ stores independent of its effects on cell cycle progression.
Journal of Biological Chemistry | 1998
Kiflai Bein; Ware Ja; Michael Simons
The nuclear transcription factor c-Myb, which is highly expressed in hematopoietic cells, has been shown to be functional in NIH 3T3 cells: cells that do not possess detectable levels of c-Myb. To identify endogenous target genes of c-Myb in fibroblasts, RNA isolated from NIH 3T3 cells stably transfected with a full-length or a dominant negative c-myb construct (GREMyb and GREMEn, respectively) was subjected to differential display analysis. 5′-Rapid amplification of cDNA ends of a selected band, sequencing, and a nucleotide homology search led to the identification of thrombospondin 2 (TSP 2) as the gene product repressed in GREMyb and induced in GREMEn cells. The pattern of TSP 2 expression during the cell cycle was consistent with c-myb-dependent regulation. The possibility that the identified transcript was TSP 1, a homologous product known to be repressed by v-Src, c-Jun, and v-Myc, was ruled out by using a TSP 2-specific DNA probe and by showing a distinct pattern of regulation of TSP 1 and TSP 2 expression. Nuclear run-on and TSP 2 promoter-reporter (chloramphenicol acetyltransferase) assays showed similar transcriptional levels in GREMyb and NIH 3T3 cells. However, mRNA stability studies showed a much shorter TSP 2 mRNA half-life in GREMyb compared with wild type NIH 3T3 cells, suggesting that c-myb affects TSP 2 expression via a post-transcriptional mechanism. The implications of a protooncogene-mediated suppression of TSP expression are discussed.
American Journal of Respiratory Cell and Molecular Biology | 2011
An Soo Jang; Vincent J. Concel; Kiflai Bein; Kelly A. Brant; Shannen Liu; Hannah Pope-Varsalona; Richard A. Dopico; Y. Peter Di; Daren L. Knoell; Aaron Barchowsky; George D. Leikauf
An integral membrane protein, Claudin 5 (CLDN5), is a critical component of endothelial tight junctions that control pericellular permeability. Breaching of endothelial barriers is a key event in the development of pulmonary edema during acute lung injury (ALI). A major irritant in smoke, acrolein can induce ALI possibly by altering CLDN5 expression. This study sought to determine the cell signaling mechanism controlling endothelial CLDN5 expression during ALI. To assess susceptibility, 12 mouse strains were exposed to acrolein (10 ppm, 24 h), and survival monitored. Histology, lavage protein, and CLDN5 transcripts were measured in the lung of the most sensitive and resistant strains. CLDN5 transcripts and phosphorylation status of forkhead box O1 (FOXO1) and catenin (cadherin-associated protein) beta 1 (CTNNB1) proteins were determined in control and acrolein-treated human endothelial cells. Mean survival time (MST) varied more than 2-fold among strains with the susceptible (BALB/cByJ) and resistant (129X1/SvJ) strains (MST, 17.3 ± 1.9 h vs. 41.4 ± 5.1 h, respectively). Histological analysis revealed earlier perivascular enlargement in the BALB/cByJ than in 129X1/SvJ mouse lung. Lung CLDN5 transcript and protein increased more in the resistant strain than in the susceptible strain. In human endothelial cells, 30 nM acrolein increased CLDN5 transcripts and increased p-FOXO1 protein levels. The phosphatidylinositol 3-kinase inhibitor LY294002 diminished the acrolein-induced increased CLDN5 transcript. Acrolein (300 nM) decreased CLDN5 transcripts, which were accompanied by increased FOXO1 and CTNNB1. The phosphorylation status of these transcription factors was consistent with the observed CLDN5 alteration. Preservation of endothelial CLDN5 may be a novel clinical approach for ALI therapy.
Virology | 2008
Han Li; Rajasekaran Baskaran; David M. Krisky; Kiflai Bein; Paola Grandi; Justus B. Cohen; Joseph C. Glorioso
ICP0 is a multi-functional herpes simplex virus type 1 (HSV-1) immediate-early (IE) gene product that contributes to efficient virus growth and reactivation from latency. Here we show that HSV-1-induced cell-cycle arrest at the G2/M border requires ICP0 and Chk2 kinase and that ICP0 expression by transfection or infection induces ATM-dependent phosphorylation of Chk2 and Cdc25C. Infection of cells with a replication-defective mutant virus deleted for all the regulatory IE genes except ICP0 (TOZ22R) induced G2/M arrest whereas a mutant virus deleted in addition for ICP0 (QOZ22R) failed to do so. Chk2-deficient cells and cells expressing a kinase-deficient Chk2 did not undergo cell-cycle arrest in response to TOZ22R infection. Chk2 deficiency diminished the growth of wild-type HSV-1, but not the growth of an ICP0-deleted recombinant virus. Together, these results are consistent with the interpretation that ICP0 activates a DNA damage response pathway to arrest cells in G2/M phase and promote virus growth.
Physiological Genomics | 2009
Koustav Ganguly; Martin Depner; Cheryl L. Fattman; Kiflai Bein; Tim D. Oury; Scott C. Wesselkamper; Michael T. Borchers; Martina Schreiber; Fei Gao; Erika von Mutius; Michael Kabesch; George D. Leikauf; Holger Schulz
Polymorphisms in Superoxide dismutase 3, extracellular (SOD3) have been associated with reduced lung function and susceptibility to chronic obstructive pulmonary disease (COPD) in adults. Previously, we identified SOD3 as a contributing factor to altered ventilation efficiency (dead space volume/total lung capacity) in mice. Because SOD3 protects the extracellular matrix of the lung, we hypothesized that SOD3 variants also may influence postnatal lung function development. In this study, SOD3 transcript and protein localization were examined in mouse strains with differing ventilation efficiency [C3H/HeJ (high), JF1/Msf (low)] during postnatal lung development. Compared with C3H/HeJ mice, JF1/Msf mice had Sod3 promoter single nucleotide polymorphisms (SNPs) that could affect transcription factor binding sites and a decline in total lung SOD3 mRNA during postnatal development. In adult JF1/Msf mice, total lung SOD3 activity as well as SOD3 transcript and protein in airway epithelial and alveolar type II cells and the associated matrix decreased. In children (n = 1,555; age 9-11 yr), two common SOD3 SNPs, one located in the promoter region [C/T affecting a predicted aryl hydrocarbon receptor-xenobiotic response element (AhR-XRE) binding motif] and the other in exon 2 (Thr/Ala missense mutation), were associated with decreased forced expiratory volume in 1 s (FEV(1)), and the promoter SNP was associated with decreased maximal expiratory flow at 25% volume (MEF(25)). In vitro, a SOD3 promoter region-derived oligonucleotide containing the C variant was more effective in competing with the nuclear protein-binding capacity of a labeled probe than that containing the T variant. Along with the previous associated risk of lung function decline in COPD, these findings support a possible role of SOD3 variants in determining lung function in children.
American Journal of Respiratory Cell and Molecular Biology | 2012
George D. Leikauf; Hannah Pope-Varsalona; Vincent J. Concel; Pengyuan Liu; Kiflai Bein; Annerose Berndt; Timothy M. Martin; Koustav Ganguly; An Soo Jang; Kelly A. Brant; Richard A. Dopico; Swapna Upadhyay; Y. Peter Di; Qian Li; Zhen Hu; Louis J. Vuga; Mario Medvedovic; Naftali Kaminski; Ming You; Danny Alexander; Jonathan E. McDunn; Daniel R. Prows; Daren L. Knoell; James P. Fabisiak
The genetic basis for the underlying individual susceptibility to chlorine-induced acute lung injury is unknown. To uncover the genetic basis and pathophysiological processes that could provide additional homeostatic capacities during lung injury, 40 inbred murine strains were exposed to chlorine, and haplotype association mapping was performed. The identified single-nucleotide polymorphism (SNP) associations were evaluated through transcriptomic and metabolomic profiling. Using ≥ 10% allelic frequency and ≥ 10% phenotype explained as threshold criteria, promoter SNPs that could eliminate putative transcriptional factor recognition sites in candidate genes were assessed by determining transcript levels through microarray and reverse real-time PCR during chlorine exposure. The mean survival time varied by approximately 5-fold among strains, and SNP associations were identified for 13 candidate genes on chromosomes 1, 4, 5, 9, and 15. Microarrays revealed several differentially enriched pathways, including protein transport (decreased more in the sensitive C57BLKS/J lung) and protein catabolic process (increased more in the resistant C57BL/10J lung). Lung metabolomic profiling revealed 95 of the 280 metabolites measured were altered by chlorine exposure, and included alanine, which decreased more in the C57BLKS/J than in the C57BL/10J strain, and glutamine, which increased more in the C57BL/10J than in the C57BLKS/J strain. Genetic associations from haplotype mapping were strengthened by an integrated assessment using transcriptomic and metabolomic profiling. The leading candidate genes associated with increased susceptibility to acute lung injury in mice included Klf4, Sema7a, Tns1, Aacs, and a gene that encodes an amino acid carrier, Slc38a4.
Journal of Cellular Physiology | 1997
Kiflai Bein; Mansoor Husain; J. Anthony Ware; Michael L. Mucenski; Robert D. Rosenberg; Michael Simons
The protooncogene c‐myb is a nuclear transcription factor that shares significant sequence homology with two other myb family members, A‐myb and B‐myb. Recent studies have suggested that c‐myb is involved in regulation of the cell cycle via control of intracellular calcium [Ca2+]1 concentration. Given the limited cell type expression of the c‐myb gene, we set out to investigate whether myb‐dependent cell cycle regulation occurs in cells not known to express the c‐myb protein. NIH 3T3 fibroblasts were stably transfected with an inducible c‐myb dominant negative construct composed of a myb DNA binding domain linked to the Drosophila engrailed transcription suppresser (pGREMEn) and a full‐length murine c‐myb cDNA sequence. Induced expression of the dominant negative construct was associated with a G1 cell cycle arrest and a failure to increase late G1 intracellular calcium levels. Similar expression studies in mouse embryonic fibroblasts derived from the c‐myb knockout mouse have demonstrated lower baseline [Ca2+]1 levels than in normal mice fibroblasts that were not further lowered by MEn expression. We conclude that regulation of calcium homeostasis and cell cycle progression via myb‐dependent transcription may play an important role in cells not possessing detectable levels of c‐myb protein. J. Cell. Physiol. 173:319–326, 1997.
American Journal of Respiratory Cell and Molecular Biology | 2009
Kiflai Bein; Scott C. Wesselkamper; Xiangdong Liu; Maggie Dietsch; Nilanjana Majumder; Vincent J. Concel; Mario Medvedovic; Maureen A. Sartor; Lisa N. Henning; Carmen Venditto; Michael T. Borchers; Aaron Barchowsky; Timothy E. Weaver; Jay W. Tichelaar; Daniel R. Prows; Thomas R. Korfhagen; William D. Hardie; Cindy J. Bachurski; George D. Leikauf
The etiology of acute lung injury is complex and associated with numerous, chemically diverse precipitating factors. During acute lung injury in mice, one key event is epithelial cell injury that leads to reduced surfactant biosynthesis. We have previously reported that transgenic mice that express transforming growth factor alpha (TGFA) in the lung were protected during nickel-induced lung injury. Here, we find that the mechanism by which TGFA imparts protection includes maintenance of surfactant-associated protein B (SFTPB) transcript levels and epidermal growth factor receptor-dependent signaling in distal pulmonary epithelial cells. This protection is complex and not accompanied by a diminution in inflammatory mediator transcripts or additional stimulation of antioxidant transcripts. In mouse lung epithelial (MLE-15) cells, microarray analysis demonstrated that nickel increased transcripts of genes enriched in MTF1, E2F-1, and AP-2 transcription factor-binding sites and decreased transcripts of genes enriched in AP-1-binding sites. Nickel also increased Jun transcript and DNA-binding activity, but decreased SFTPB transcript. Expression of SFTPB under the control of a doxycycline-sensitive promoter increased survival during nickel-induced injury as compared with control mice. Together, these findings support the idea that maintenance of SFTPB expression is critical to survival during acute lung injury.